Angles
Solving Quadratics
Graphing Quadratics
Radicals
Special Right Triangles
100

Solve for y

y = 18

100

Solve the quadratic by factoring

0=x^2+10x-24

x = 2    x = -12

100

Find the y-intercept

y = x^2 + 15x - 13

y = -13

100

Simplify 

sqrt45

3sqrt5

100

State the missing sides

a = 12   b = 6sqrt3

200

Solve for x

x = -2

200

Solve using the quadratic formula

y=x^2+13x-14

x = 1    x = -14

200

Solve for the x-intercepts

y = (x + 5)(2x - 12)

x = -5    x = 6

200

Add 

3sqrt20 + 4sqrt5

10sqrt5

200

Find the missing sides

a = 7   b =7sqrt3 

300

Solve for x

x = 10

300

Solve using the quadratic formula

2x^2-19x-10=0

x=10     x=-1/2

300

Find the vertex by using the formula for the x-value, then plugging in to find corresponding y-value

x=-b/(2a 

y = x^2+4x+10

(-2, 6)

300

Multiply 

sqrt3(2sqrt5+sqrt6)

2sqrt15+3sqrt2

300

Fill in the missing sides

a = 4   b = 4

400

Solve for x and y

y = 11   x = -16

400

Solve by completing the square

x^2-9x-36=0

x=12     x=-3

400

Convert to Vertex Form by completing the square and state the vertex 

y = x^2+8x+14

y = (x+4)^2-2

Vertex: (-4, -2)

400

Multiply 

(5+sqrt10)(2+sqrt5)

10+5sqrt5+2sqrt10+5sqrt2

400

Find the perimeter of the triangle

30 + 10sqrt2+10sqrt3

500

Solve for x, y, and z

x = 8   y = -34   z = 253

500

Solve using the quadratic formula. Leave in exact form. Simplify all radicals. 

2x^2+8x-5=0

x=(-4pmsqrt26)/2

500

Solve for the x-intercepts by using quadratic formula

** Must simplify all answers

y = 3x^2+4x-7

x = 1 x = -7/3

500

Multiply 

(7+sqrt5)(2+sqrt5)

19+9sqrt5

500

Find the area of the triangle

50 + 50sqrt3

M
e
n
u