Polar Form of Complex Numbers
Product of Complex Numbers
Quotient of Complex Numbers
Roots of Complex Numbers
100

Write the number in polar form:

1

1

100

z* z= ?

where z= cos (pi/2) + isin (pi/2) and 

z2 = cos (pi) isin(pi)

-2i

100

z/ z= ?

where z= cos (pi/2) + isin (pi/2) and 

z2 = 0.5(cos (pi/4) isin(pi/4))

((2)^1/2)/4 + i(2^1/2)/4

100

Find all the roots of: 

x^4 - 1 = 0

1, -1, i, -i

200

Write the number in polar form:

i

i

200

z* z= ?

where z= 3(cos (pi/4) + isin (pi/4)) and 

z2 = 6(cos (pi) isin(pi))

9(2^1/2) - 9i(2^1/2)

200

z/ z= ?

where z= 3(cos (pi) + isin (pi)) and 

z2 = 8(cos (pi/2) isin(pi/2))

(3/8)i

200

Find all the roots of: 

x^4 + 1 = 0

(2^1/2)/2 + [i(2^1/2)/2]

-(2^1/2)/2 + [i(2^1/2)/2]

(2^1/2)/2 - [i(2^1/2)/2]

-(2^1/2)/2 - [i(2^1/2)/2]

300

Write the number in polar form:

1 - i

2^1/2 - i(2^1/2) 

300

z* z= ?

where z= 1.5(cos (-pi/3) + isin (-pi/3)) and 

z2 = (9/4)(cos (-pi) isin(-pi))

(-27/16) + (27i(3^1/2) /16)

300

z/ z= ?

where z= 2(cos (pi/3) + isin (pi/3)) and 

z2 = 0.5(cos (-pi/6) isin(-pi/6))

4i

300

Find all the roots of: 

x^2 + 1 = 0

i(2^1/2), -i(2^1/2)

400

Write the number in polar form: (Do not simplify the trig functions)

-4 - 3i

5[cos(0.643) + isin(0.643)]

400

z* z= ?

where z= 7(cos (pi/4) + isin (pi/4)) and 

z2 = 18(cos (-pi/3) isin(-pi/3))

121.706 + 32.611i

400

z/ z= ?

where z= (1/8)cis(pi/4) and 

z2 = (0.25)cis(pi/3)

0.482 - 0.129i

400

Find all the roots of: 

x^5 - 1024 = 0

4, 1.236 + 3.804i, -3.236 + 2.351i

-3.236 - 2.351i, 1.236 - 3.804i

500

Write the number in polar form: (Do not simplify the trig functions)

-7 + 6.5i


9.552(cos(-0.748) + isin(-0.748))

500

z* z= ?

where z= 5cis(7pi/4) and 

z2 = 86cis(3pi)

-215(2)^1/2 + 215i(2^1/2)

500

z/ z= ?

where z= 0.75cis(2pi/3) and 

z2 = 1.6cis(4pi)

-15/64 + 15i(3^1/2)/64

500

Find all the roots of: 

x^6 + 117649 = 0

7i, -7i, 7(3^1/2)/2 + 7i/2, -7(3^1/2)/2 + 7i/2,

-7(3^1/2)/2 - 7i/2, 7(3^1/2)/2 - 7i/2

M
e
n
u