Powers of i
Adding Complex
Subtracting Complex
Multiplying Complex
Math Terms
100

i2

-1

100

(2 + 3i) + (4 + 5i)

6 + 8i

100

(8 + 7i) - (6 + 2i)

2 + 5i

100

(3 + 2i)(3 - 2i)

13

100

This number is equal to the square root of -1

i

200

i0

1

200

(9 + 2i) + (-3 + i)

6 + 3i

200

(9 + 2i) - (5 + 9i)

4 - 7i

200

(4 + 9i)(2 + 3i)

-19 + 30i

200

This number is composed of two terms: a real term and an imaginary term

complex number

300

i9

i

300

(-9 - 5i) + (5 + 2i)

-4 - 3i

300

(6 - 5i) - (2 - 3i)

4 - 2i

300

(3 - i)(2 + 8i)

14 + 22i

300

When you change the sign between the real and imaginary parts of a complex number you have found this.

The conjugate

400

i14

-1

400

(-8 - 6i) + (-1 - i)

-9 - 7i

400

(-7 + 3i) - (-1 - i)

-6 + 4i

400

(-3 + 7i)2

-40 - 42i

400

The number under a radical is called:

a radicand

500

i43

-i

500
(-4 - i) + (4 - i)

-2i

500

(-5 - 7i) - (-5 - 7i)

0

500

(1.6 - 3.4i)2

-9 - 10.88i

500

This type of number includes any number that can be found on a number line (positive, negative, whole number, decimal, fraction, etc.)

Real number

M
e
n
u