Regla de la potencia
Regla de la cadena
Regla del producto
Regla del cociente
Trigonométricas
100

y=x5

y'=5x4

100

y=(5x2+2)4

y'=100x4(5x5+2)3

100

y=(x3+3)x5

y'=8x7+15x4

100

y=1/(x-1)

y'=-1/(x-1)2

100

y=cos x2

y'= -2x sin x2

200

y=7x12

y'=84x11

200

y=(4x2+3)-2

y'=-16x / (4x2+3)3

200

y=5x5(2x3+3)

y'=8x7+75x4

200

y=5x4/(5x2+4)

y'=(50x5+80x3)/(5x2+4)2

200

y=sin 2x5

y'=10x4 cos 2x5

300

y=(3/24)x3

y'=(1/4)x2

300

y=(x5+2)1/5

y'=x4(x5+2)-4/5

300

y=(-x4+3x3-4)(-3x2+4)

y'=(18x5-45x4-16x3+36x2)-(24x)

300

y=(3x3-2x2-x)/(x2-2)

y'=(3x4-17x2+8x+2)/(x2-2)2

300

y=tan 3x3

y'=9x2 sec2 3x3

400

y=(28/4)x1/21

y'=(1/3)x-20/21

400

y=(3x2+2)1/4

y'=((3/2)x)(3x2+2)-3/4

400

y=(2x5/4+3)(x4-2x3-5)

y'=((21/2)x17/4-(68/5)x13/4-(25/2)x1/4)+(12x3-18x2)

400

y=(2x5+2x2+1)/(2+4x-3)

y'=(20x4+72x+40x-2-12x-4)/(2+4x-3)2

400

y=cos 6x7/3

y'=-14x4/3 sin 6x7/3

500

y=(6/14) ⁶√x7

y'=(1/2)x1/6

500

y=√(5x5-3)

y'=((25/2)x4) / (5x5-3)1/2    ó  

 y'=((25/2)x4) / √(5x5-3)

500

y=(3x5-4)(x4+∜x+2) 

y'=(27x8+(63/4)x17/4)+(30x4-16x3-1/x3/4)

500

y=(2x5+3x3-3x2)/(3∛x2+2)

y'=(26x14/3+21x8/3-12x5/3+20x4+18x2-12x)/(3∛x2+2)2

500

y=tan ∜x5

y'=5/4x1/4 sec2 ∜x5 

M
e
n
u