400
1. tanx = sinx/cosx
tan²x = sin²x/cos²x
tan²x = ((1-cos2x)/2)/((cos2x+1)/2)
same, dot, flip
tan²x = (1-cos2x)/2*2/(cos2x+1)
tan²x = (1-cos2x)/(cos2x+1)
square root
tanx = ±√((1-cos2x)/(cos2x+1))
let x=x/2
tan(x/2) = ±√((1-cosx)/(cosx+1))
2. tan(x/2) = ±√((1-cosx)/(cosx+1))
multiplied by (cosx+1)/(cosx+1)
tan(x/2) = ±√((1-cos²x)/(1+cosx)²)
tan(x/2) = ±√(Sin²x/(1+cosx)²)
tan(x/2) = sinx/(1+cosx)
3. tan(x/2) = ±√((1-cosx)/(cosx+1))
multiplied by (cosx-1)/(cosx-1)
tan(x/2) = ±√((1-cosx)²/(1-cos²x))
tan(x/2) = ±√((1-cosx)²/Sin²x)
tan(x/2) = (1-cosx)/sinx
Why/How are there three half-angle identities of tan(u/2)?