Product Rule
Quotient Rule
Randoms
Chain Rule
Trig stuff
100

d/dx((x+2)2)

2(x+2) or 2x+4

100

d/dx(sin(x)/cos(x))

sec2(x)

100

d/dx(e4x)

4e4x

100

d/dx((x2+2x+1)21)

21(2x+2)(x2+2x+1)20

100

d/dx(2cos(x)+3sin(x))

-2sin(x)+3cos(x)

200

d/dx(x3e3x)

3x2e3x(x+1)

200

d/dx(x/x2)

-1/x2

200

d/dx(epi)

0

200
d/dx[((x)/(x+1))5]

5x4/(x+1)6

200

d/dx(tan(2x))

2sec^2(x)


300

d/dx(sec2(x))

2sec2(x)tan(x)

300

d/dx(ex/(2x+3))

(ex(2x+3)-ex(2))/(2x+3)2

300

Using the limit definition of derivative, d/dx(3x-x2) looks like this (just set it up, do not compute)

limh->0 [(3(x+h)-(x+h)2)-(3x-x2)]/h

300

d/dx(e(x^3+3))

3x2e(x^3+3)

300

d/dx (cot(x))

-csc^2(x)

400

d/dx(sqrt(x)*12x)

18sqrt(x)

400

d/dx((x2+3x+1)/(x3−2x))

−(x4+6x3+5x2−2)/(x3−2x)2

400

If I asked you to determine the speed (in miles per hour) of a car whose position, where t=hours, is defined by

p(t)=t2+3t+2

what would its speed be exactly 5 hours after it started?

13 miles per hour

400
d/dx(sqrt(x3-2x2+3))

x(3x-4)/2(sqrt(x3-2x2+3))

400

d/dx(-ex(sin(x))

-excos(x)-exsin(x)

500

d/dx(sec(x)*tan(x))

sec(x)tan2(x)+sec3(x)

500

d/dx((x3+2x)/(x2−4))

(x4−14x2−8)/(x2−4)2


500

find the equation of the tan line of f(x) = x2 at the point (2,4)

y=4x−4

500

d/dx(tan(sqrt(x2+ex)))

 -sin(sqrt(x2+ex)*(2x+ex)/2sqrt(x2+ex)

500

Find the equation of the tangent ine to g(x)=cos(3x) at the point (pi/6,0)

y=-3x+pi/2

M
e
n
u