The Big 4
Logarithmic and Exponential
Trigonometry and Inverse
Wild Card
100

d/dx

(x4 + 3x3 - 7x2 +3)

= 4x3 + 9x2 -14x

100

d/dx

(e2x)

= 2e2x

100

d/dx

[cos(x)]

= -sin(x)

100

d/dx

(4ln(6))

= 0

200

d/dx

(6x2 + 7x)2 

= 2(6x2 +7x)(12x + 7)

= 144x3 + 252x2 + 98x

200

d/dx

(log6x)

= 1/(xln(6))

200

d/dx

[sec(x)]

= sec(x)tan(x)

200

d/dx

(e2cos(x))

= -2sin(x)e2cos(x)

300

d/dx

(x2sin(x))

= 2xsin(x) + x2cos(x) 

300

d/dx

[ln(7x2 + 2)]

= (14x) / (7x2 + 2)

300

d/dx

[sin-1(x)]

= 1 / (1 - x2)1/2

300

d/dx

[3xln(4x2)]

= 6 + 3ln(4x2)

400

d/dx

[xsin(3x)]

= sin(3x) + 3xcos(3x)

400

d/dx

[e3xln(x2)]

= 3e3xln(x2) + (2e3x)/x

400

d/dx

[cos(x)tan(x) - 3]

= -sin(x)tan(x) + sec(x)

= -sin(x)tan(x) + cos(x)sec2(x)

400

g is the inverse function of f. Find g'(1). 

Points on f(x): (1,-5) (2,-9)

Points on f'(x): (1,-2) (2,1)

Points on g(x): (1,2) (2,4)

= 1

500

d/dx

[(3/2)x2 + 4x] / [3x4 + 7x2]

= [(3x4 + 7x2)(3x + 4) - ((3/2)x2 + 4x)(12x3 + 14x)] / [(3x4 -7x2)2]

= (-9x3 - 36x2 - 28) / (9x6 +42x4 + 49x2)

500

d/dx

(4x / ln(x))

= [ln(x)4xln(4) - (4x / x)] / (ln(x))2
500

d/dx

[tan-1(sin(x))]

= cos(x) / (1 + sin2(x))

500

d/dx

[e3x / ln(4x)]

= (ln(4x)3e3x - e3x/x) / (ln(4x))2

M
e
n
u