d/dx
(x4 + 3x3 - 7x2 +3)
= 4x3 + 9x2 -14x
d/dx
(e2x)
= 2e2x
d/dx
[cos(x)]
= -sin(x)
d/dx
(4ln(6))
= 0
d/dx
(6x2 + 7x)2
= 2(6x2 +7x)(12x + 7)
= 144x3 + 252x2 + 98x
d/dx
(log6x)
= 1/(xln(6))
d/dx
[sec(x)]
= sec(x)tan(x)
d/dx
(e2cos(x))
= -2sin(x)e2cos(x)
d/dx
(x2sin(x))
= 2xsin(x) + x2cos(x)
d/dx
[ln(7x2 + 2)]
= (14x) / (7x2 + 2)
d/dx
[sin-1(x)]
= 1 / (1 - x2)1/2
d/dx
[3xln(4x2)]
= 6 + 3ln(4x2)
d/dx
[xsin(3x)]
= sin(3x) + 3xcos(3x)
d/dx
[e3xln(x2)]
= 3e3xln(x2) + (2e3x)/x
d/dx
[cos(x)tan(x) - 3]
= -sin(x)tan(x) + sec(x)
= -sin(x)tan(x) + cos(x)sec2(x)
g is the inverse function of f. Find g'(1).
Points on f(x): (1,-5) (2,-9)
Points on f'(x): (1,-2) (2,1)
Points on g(x): (1,2) (2,4)
= 1
d/dx
[(3/2)x2 + 4x] / [3x4 + 7x2]
= [(3x4 + 7x2)(3x + 4) - ((3/2)x2 + 4x)(12x3 + 14x)] / [(3x4 -7x2)2]
= (-9x3 - 36x2 - 28) / (9x6 +42x4 + 49x2)
d/dx
(4x / ln(x))
d/dx
[tan-1(sin(x))]
= cos(x) / (1 + sin2(x))
d/dx
[e3x / ln(4x)]
= (ln(4x)3e3x - e3x/x) / (ln(4x))2