Rates of Change
Derivative Rules
Derivatives
Differentiability
Trig. Derivatives
100

(f(b)-f(a))/(b-a

Average Rate of Change

(Deltay)/(Deltax)

100

y=e^x+3sinx

Basic Rules

100

y=3/x^4

y'=-12x^-5

y'=-12/x^5

100

Differentiability implies continuity.

True

100

d/dy sinx

cos x

200

(f(x+h)-f(x))/(h)

Slope of the Secant Line

Average Rate of Change

200

y=root(3)4-x^2

Chain Rule

200

y=5xlnx

y'=5(lnx+1)

200

The instantaneous rate of change must equal the average rate of change somewhere in the interval.

Mean Value Theorem (MVT)

200

d/dy cscx

-csc x cot x

300

f'(x)=lim_(h->0) (f(x+h)-f(x))/(h)

Instantaneous Rate of Change

Slope of the Tangent Line

Derivative

300

y=sinx/e^(2x+3)

Quotient Rule

300

y=e^x/sinx

y'=((e^x)(sinx)-(e^x)(cosx))/(sinx)^2

y'=(e^x(sinx-cosx))/sin^2x

300

For a continuous function on a closed interval [a, b], you are guaranteed a height at least once.

Intermediate Value Theorem (IVT)

300

d/dy cos x

-sin x

400

f'(c)=lim_(x->c) (f(x)-f(c))/x-c

Alternate Definition

Derivative at a Point

400

y=xsin^(-1)x

Product Rule

400

y=cos^-1(2x+3)

y'=-2/sqrt(1-(2x+3)^2

y'=-2[1-(2x+3)^2]^(-1/2)

400

Continuity implies differentiability.

False

400

d/dy tan x

sec^2x

500

Daily Double

lim_(h->0) ((2+h)^2-2^2)/h

500

y=e^(xtanx)

Chain Rule

500

y=ln(5x^2+1)

y'=(10x)/(5x^2+1)

y'=10x(5x^2+1)^-1

500

When the derivative fails to exist.

Discontinuity, corner or cusp, vertical tangent

500

d/dy secx

secx tanx

M
e
n
u