Derivatives of trigonometric functions
Quotient Rule
Product Rule
Chain Rule
sum/difference
100

f(x)=sin(x)+cos(x)

f′(x)=cos(x)−sin(x)

100

f(x)=x2+1x


−x2+1/(x2+1)2

100

f(x)=x2⋅(3x+1)

f′(x)=9x2+2x

100

f(x)=sin(2x)

f′(x)=2cos(2x)

100

f(x)=x3+5x

f′(x)=3x2+5

200

f(x)=sin(3x)

f′(x)=3cos(3x)

200

f(x)=sin(x)/x

xcos(x)−sin(x)/x2

200

f(x)=x⋅sin(x)

f′(x)=sin(x)+xcos(x)

200

f(x)=cos(x2)

f′(x)=−2xsin(x2)

200

f(x)=x2−cos(x)

f′(x)=2x+sin(x)

300

f(x)=x⋅cos(x)

f′(x)=−xsin(x)+cos(x)

300

f(x)=x/cos(x)

f′(x)=cos(x)+xsin(x)/cos2(x)

300

f(x)=sin(x)⋅cos(x)

f′(x)=cos2(x)−sin2(x)

300

f(x)=ln(sin(x))

f′(x)=cot(x)

300

f(x)=sin(x)+x4−ln(x)

f′(x)=cos(x)+4x3−x1

400

f(x)=x2tan(x)

f′(x)=x4x2⋅sec2(x)−tan(x)⋅2x

400

f(x)=tan(x)/sin(x)

f′(x)=sin(x)⋅sec2(x)−tan(x)⋅cos(x)/sin2(x)

400

f(x)=x2⋅cos(3x)

f′(x)=2xcos(3x)−3x2sin(3x)

400

f(x)=[tan(x)]4

=4tan3(x)sec2(x)

400

f(x)=−2x2+3sin(x)−4cos(x)

f′(x)=−4x+3cos(x)+4sin(x)

500

xsin(y)+ycos(x)=1

dy/dx=ysin(x)−sin(y)/xcos(y)+cos(x)

500

f(x)=x2⋅sin(x)/cos(x)

f′(x)=cos(x)[2xsin(x)+x2cos(x)]+x2sin2(x)/cos2(x)

500

f(x)=x⋅sin(x)⋅ln(x)

f′(x)=sin(x)ln(x)+xcos(x)ln(x)+sin(x)

500

f(x)=sin2(3x)(or [sin(3x)]2)

f′(x)=3sin(6x)

500

f(x)=tan2(x)+e3x

f′(x)=2tan(x)sec2(x)+3e3x

M
e
n
u