y=3x+4x^-3
y'=3-12x^-4
sinx-7cosx
y'=cosx+7sinx
y=x^2+4sqrtx
y'=2x+4(1/2)x^(-1/2)
Find the slope of f(x) when x=1
f(x)=x^3+2x^2+5
7
f(x)=3sqrtx-1/x^7
f'(x)=3/2x^(-1/2)+7x^-8
y=-10tanx
y'=-10sec^2x
y=(2-x)/(3x+4)
y'=((3x+4)(-1)-(2-x)(3))/(3x+4)^2
Write the equation of the tangent line at x=pi for
f(x)=(e^x+5)sinx
f'(x)=e^xsinx+cosxe^x
f'(4)=-e^pi
f(pi)=0
y-0=-e^pi(x-pi)
y=4x^(-2/8)-x^3
y'=-x^(-10/8)-3x^2
y=sinx+3x^4cosx
y'=cosx+(12x^3cosx-cosx(3x^4))
y= x^4 (x^3+3x-1)
y'=4x^3(x^3+3x-1)+(3x^2+3)(x^4)
Find the instantaneous rate of change of the function at x = 1.
f(x)=sinxsecx
f'(x)=cosxsecx+secxtanxsinx
f'(1)=1
y=1/sqrt(x^5)
y'=-5/2x^(-7/2)
y=-2cotx+tanx+sinxcosx
y'=2cotxcscx+sec^2x+(cosxcosx-sinxsinx)
y=(-x^3+lnx-x)(e^x-cosx)
y'=(-3x^2+1/x-1)(e^x-cosx)+(e^x+sinx)(-x^3+lnx-x)
Find the x-value(s) where the tangent to the graph is parallel to the x-axis.
f(x)=3x^4-5x^3+2
x=0, 5/4
g(x)=-3lnx-5/(root(4)(x^3))+2
g'(x)=-3/x-15/4x^(-7/4)
y=cotx/tanx
y'=(-cotxcscxtanx-sec^2xcotx)/tan^2x
y=(lnx)/sinx+4x^-2
y'=((1/x(sinx)-cosxlnx)/sin^2x)-8x^-3
Find the equation of the tangent at (0, 1) of the curve,
y=3x+5cosx
y'=3-5sinx
y'(0)=3
y-1=3(x-0)