sin x
y = sin(x+1)
y'=cos(x+1)(1)
y=-cosx
y'= sinx
y=tan2x
y'=sec22x(2)
y=cossqrtx
y'=-sinx1/2(1/2)(x)-1/2
y=sin(-x)
y'=cos(-x)(-1)
y=cos5x
y'=-sin5x(5)
y=tan(5x-1)
y'=sec2(5x-1)(5)
y=xsinx+cosx
y'=xcosx+sinx(1)-sinx(1)
y=sin(3x+4)
y'=cos(3x+4)(3)
y=cos(-2x)
y'=-sin(-2x)(-2)
y=sinx/cosx
y'=sec2x(1)
y=sin2x+cos2x
y'=2(sinx)cosx+2(cosx)-sinx
y=x sinx
y'= xcosx(1)+sinx(1)
y=1/cosx
y'=secxtanx(1)
y=1/(tan5x)
y'=-csc25x(5)
y=sin(1-x2)
y'=cos(1-x2)(-2x)
y=sin25x
y'=2(sin5x)1cos5x(5)
y=cos25x
y'=2(cos5x)1(-sin5x)(5)
y=tan5x+sin3x
y=sec25x(5)+cos3x(3)
y=sin2x2
y'=2(sinx2)cosx2(2x)