Basic Differentiation
Product rule
Quotient rule
Chain Rule
Random
100

f(x) = 20

f'(x) = 0

100

f(x) = x27x

f'(x) = 21x2

100

f(x) = (2x)/(x+3)

f'(x) = 6/(x+3)2

100

f(x) = (3x+5)6

f'(x) = 18(3x+5)5

100

f(x) = 2x3 - (1/x)

f'(x) = 6x2 + (1/x2)

200

f(x) = 14x + 9x

f'(x) = 23

200

f(x) = (3x4)(2x+4)

f'(x) = (12x3)(2x+4) + (3x4)(2)

200

f(x) = x2/(7x+3)

f'(x) = ((2x)(7x+3) - (x2)(7))/(7x+3)2

200

f(x) = sqrt(x3+4x)

f'(x) = (3x2+4)/(2sqrt(x3+4x))

200

f(x) = (x2 + 1)(sqrt(x))

f'(x) = 2x(sqrt(x)) + (x2 + 1)/(2sqrt(x))

300

f(x) = 3x7 + 2x

f'(x) = 21x6 + 2

300

f(x) = 5xe2x-1 

f'(x) =5e2x-1 (1+2x)

300

f(x) = (sqrt(x))/(x3+7)

f'(x) = (((x3+7)/(2sqrt(x))) - (sqrt(x))(3x2))/(x3+7)2

300

f(x) = (7x3+8x2+9)3 + 449

f'(x) = 3(7x3+8x2+9)2 * 21x2+16x

300

f(x) = x2/cos(x)

f'(x) = ((2xcosx) + (x2sinx))/(cos2x)

400

f(x) = 5x2 + sqrt(X) + 3x1

f'(x) = 10x + (1/2(sqrt(x))) + 3

400

f(x) = (sqrt(x))(5x12) + 4

f'(x) = (5x12/(2sqrt(x))) + sqrt(x)(60x11)

400

f(x) = (sin(x))/(x5+x3)

f'(x) = ((cos(x))(x5+x3) - (sin(x))(5x4+3x2))/(x5+x3)2

400

f(x) = sin3(5x2)

f'(x) = 3(sin(5x2))2 * cos(5x2) * 10x

400

f(x) = sinx*cosx

f'(x) = cos2x - sin2x

500

f(x) = 3x3 + 4x - 8x9 + sqrt(x)

f'(x) = 9x2 + 4 - 72x+ (1/2(sqrt(x)))

500

f(x) = (x2)(8x+7)(sqrt(x))

f'(x) = (48x + 14)(sqrt(x)) + (24x2 + 14x)/(2sqrt(x))

500

f(x) = (cos(x))/(tan(x))

f'(x) = ((-sin(x))(tan(x)) - (cos(x))(sec2(x)))/(tan(x))2

500
f(x) = (-cos(7x2))2

f'(x) = 2(-cos(7x2)) * sin(7x2) * 14x

500

f(x) = sqrt(sinx)

f'(x) = cos(x)/(2sqrt(sinx))

M
e
n
u