Geometric Series
p-Series
Integral Test?
LCT
Free For All
100

\sum_{n=1}^\infty 2 (\frac{1}{3})^{n-1}

Converges, this is a geometric with 

r=\frac{1}{3}. 

\text{Converges to } 3.

100

\sum_{n=1}^\infty \frac{1}{n}

Diverges. This is the harmonic series. OR, you can say this is a p-series with p=1. 

100

\sum_{n=1}^\infty \frac{ln(n)}{n} 

The integral 

\int_1^\infty \frac{ln(x)}{x} dx

\text{diverges so by the integral test }

\text{ the series diverges.}

100

\sum_{n=1}^\infty \frac{3}{\sqrt{n}}

By the LCT with a p-series with p=1/2, this series also diverges. 

100

\sum_{n=1}^\infty \frac{n}{n+1}

The terms of this series go to 1, not 0, so the series diverges. 

200

\sum_{n=1}^\infty (\frac{1}{2})^{1-n}

Diverges. This is a geometric series with r=2. 

200

\sum_{n=1}^\infty \frac{1}{n^{2/3}}

Diverges. This is a p-series with p=2/3, which is less than 1. 

200

\sum_{n=1}^\infty e^{-n}

The integral 

\int_1^\infty e^{-x} dx

\text{ converges to } e^{-1} 

\text{ so the series also converges.}

200

\sum_{n=1}^\infty \frac{5}{\sqrt{n^8+n^2-7}

By the LCT with a p-series where p=4, this series also converges. 

200

\sum_{n=1}^\infty \frac{2n^2+\cos^2(n)}{5n^9-8}

By the LCT with a p-series where p=7, this series also converges. 

300

\sum_{n=1}^\infty (\frac{5}{4})^{2-n}

Converges, this is geometric with r=4/5. This converges to 25/4. 

300

\sum_{n=1}^\infty \frac{1}{\sqrt{n^7}}

Converges. This is a p-series where p=7/2, which is larger than 1. 

300

\sum_{n=\pi}^\infty sin(n)

This diverges because the integral below does not converge to any number. 

\int_\pi^\infty sin(x) dx

300

\sum_{n=1}^\infty (\frac{3n-1}{4n+3})^n

By the LCT with a geometric series with r=3/4, this series also converges. 

300

\sum_{n=0}^\infty \frac{2^{3-n}}{5^{n+4}}

This is a geometric series with r=1/10 and converges to 

\frac{\frac{8}{625}}{1-\frac{1}{10}} = \frac{16}{1125}

M
e
n
u