Algebra Rules
Derivatives
Partial Derivatives
Profit Maximization
100

Simplify the following expression: (4x^2)/(2x)


2x

100

y = 4x^3

12x^2

100

y = 3xz + 7(x^2)(z^2) +7x

dy/dx = ?

3z + 14xz^2 + 7

100

The first step of profit maximization is to the find TR. Find total revenue given the equation: Q = 21 - 3P

TR = 7Q -1/3(Q^2)

200

Simplify the following expression: (x^8)/(x^3*x^2)

x^3

200

y = 2x^2 - 3x + 7

4x-3

200

y = 3xz + 7(x^2)(z^2) +7x

dy/dz = ?

3x  + 14(x^2)z

200

Find the revenue maximizing price and quantity given: P = 120 - 3Q

Price = 60

Quantity = 20

300

Rewrite 2x^(-2) as a fraction.

2/(x^2)

300

y = 30

0

300

TC = 30 + 2PY - .5P^2

dTC/dP = ?

2Y - P

300

Find the revenue maximizing price and quantity given: P = 180 - 24Q + Q^2

Quantity = 6

Price = 72

400

Rewrite the cubed root of x to the power of 7 as a variable with a fractional exponent.

x^(7/3)

400

TR = 30 -3Q -4Q^2

MR = -3-8Q

400

y = 2(x1^2)(x2^3) - 4x2 + 7(x1^2)x2

dy/dx2 = ?

6(x1^2)(x2^2) - 4 + 7x1^2

400

Find profit maximizing price and quantity given: P = 100 - Q and TC = 10Q

Price = 55

Quantity = 45

500

Simplify the following expression: (x^-2)/(x^2*x^-3)

x^-3

500

TR = 30-2Q+.25Q^-2

MR = -2-.5Q^-3

500

y = 2(x1^2)(x2^3) - 4x2 + 7(x1^2)x2

dy/dx1 = ?

4x1x^3 + 14x1x2

500

Find profit maximizing price and quantity given the equations: P = 100 - 2Q and TC = 20 + 10Q + Q^2

Price = 70

Quantity = 15

M
e
n
u