DERIVATIVES
LIMITS
TRIG INTEGRAL
ANTIDERIVATIVES
PRODUCT RULE
100

What is a derivative? 

The derivative describes SLOPE 

100

What has to be true for a limit to exist? 

The limit must approach the same point from both sides

100

f'(x):

ex

Sexdx = ex+c

100

S(3x4-2x+10/x6)dx

S(3/5x5-x2-x-5)+c

100

g(x) = (2x+1)(x3-1)

(2x+1)(3x) + (x3-1)(2)

= 2x3+3x2+3x-2

200

5x2-15x

10x-15

200

What three things must be true for a limit to be continuous? 

- The limit has to exist

- The limit has to have a y-value 

- The limit has to equal the y-value 

200

cosx

Scosxdx = Sinx + c

200

Sx2(x2-4x+2)dx

S1/3x3(1/3x3-2x2+2x)+c

200

y=(3x2-2x)(x2+3x-4)


(3x2-2x)(2x+3) + (6x-2)(x2+3x-4)

= 27x2-42x+8

300

Find the derivative: 

g(x)=ex(5x3+2x+6)

g'(x)= (ex)(15x2+2) + (ex)(5x3+2x+6)

300

Given g(x) = 12-x4

Find the linear approximation of g(x) at the point where x=2

Slope: 

12-x4 = -4x---------> -4(2)3 = -32

Point: (2,-4)

12-(2)4 = -4 

Equation: 

y+4=-32(x-2) -------> y=-32(x-2)-4

300

-csc2x

Scsc2xdx = -cotx+c

300

f(x) = 3x2

f(x) = x3 + c

300

g(x) = x2(5x3+3)

(x2)(15x2) + (5x3+3)(2x)

= 25x4+6x

400

Find the derivative: 

g(t)=-2(2t2-1/2t)6

g'(t)=-12(2t2-1/2t)(4t-1/2)

400

Find the linear approximation of f(x) = x3-2x+3 at the point where x=2


Slope: 

3x2-2 -----> 3(2)2-2 = 10

Point: (2,7)

(2)3-2(2)+3=7

Equation: 

y-7 = 10(x-2) --------> y=10(x-2)+7

400

secxtanx

Ssecxtanxdx = secx +c

400

f(x) = (2x + 3)/(x2 + 2x + 1)

f(x) = ln|x + 1| - 1/(x + 1) + c

400

y=x-2(ex3+3)

(x-2)(3ex2) + (-2x)(ex3+3)

= 3ex-4 - 2xex4 - 6x

500

Find the derivative: 

y= -4log2(3x5)

dy/dx = -4(1/ln(2)3x5)(15x4)

500

From the previous question, use linear approximation to estimate f(2.1)

10(2.1-2)+7 ------> 8

500

-cscxcotx

Scscxcotx = -cscx +c

500

f(x) = ex/(1+ex)

f(x) = 1 + ex - ln|1+ex| + c

500

f(x) = x2 sin(x)

x2sinx + x2sinx

= f'(x) = 2x sin(x) + x2 cos(x)

M
e
n
u