Half Angle
Double Angle
Pythagorean Identities
Sum and Difference
More Identities
100
Find the value of sin75°.
±{√(2+√3)}/2
100
Solve sin2x=cosx on the interval [0, 2π].
x=π/6 and 5π/6
100
Simplify the expression to a single trigonometric function (1 – cos^2x)(cscx)
sinx
100
Find the exact value of the following expression: sin147°cos78°+cos147°sin78°
-(√2)/2
100
What is the equation for sin(x/2)?
±√(1-cosx)/2
200
Find the value of tan(7π/12).
(-2√3-3)/3
200
Solve 1-(sinx^2)-cos2x=3/4.
π/3+πk, kEz and 5π/3+πk, kEz
200
Simplify this expression into an expression whose only trig function is sin: sin^4(x) - cos^4(x)
2sin^2(x) - 1
200
Find the exact value of cos(11π/12) using the sum and difference formula
(-√2 - √6)/4
200
Simplify the equation cos(2x) in terms of sin.
1-(2sin^2)x
300
Solve 2sin^2(x/2)+cosx = 1+sinx on the interval of [0,2π].
0 and π
300
Find sin2π when sinx=-5/13 and "x IS GREATER THAN 3π/2 AND LESS THAN 2π."
-120/169
300
Simplify this complex fraction into a single trigonometric function: [(sinx/cosx) + (cosx/sinx)]/[(1)/(sinx)]
1/cosx
300
If cosƟ = ¼ and 3π/2 ≤ Ɵ ≤ 2π, find… Sin(Ɵ – π/6)
(-3√5-1)/8
300
Find the value of cos(sin^-1(-5/13))
12/13
400
Solve 2tan(x/2)+2cos(x)tan(x/2) = 1 on the interval [0,2π].
π/6 and 5π/6
400
Solve cos2x=cosx on the interval [0,2π].
0 and π and 4π/3 and 4π/5
400
Simplify: [(1 - cos^2(x))]/[(sec^2(x) - 1)
cos^2(x)
400
Establish the identity csc(Ɵ – π/2) = -secƟ
1/(sin(Ɵ - π/2)) = 1/(sinƟcosπ/2 - cosƟsinπ/2) = 1/(sinƟ(0) - cosƟ(1)) = 1/(-cosƟ) = -secƟ = -secƟ QED
400
prove that (sin^4x - cos^4x)/(sin^2x - cos^2x) = 1
(sin^4x - cos^4x)/(sin^2x - cos^2x) = ((sin^2x)^2 - (cos^2x)^2)) / (sin^2x - cos^2x) = (sin^2x+cos^2x)(sin^2x - cos^2x) / (sin^2x - cos^2x) = sin^2x+cos^2x = 1 = 1 QED
500
Find tan(x/2) when tanx=-1/2 and "x IS GREATER THAN π/2 AND LESS THAN π.
√{(5+2√5)/(5-2√5)}
500
Find cos2x when tanx=-1/2 and "x IS GREATER THAN π/2 x AND LESS THAN π."
3/5
500
If… csc(x) = 5/3 and tan(x) = 3/4, find the values of the remaining trigonometric functions using a Pythagorean Identity.
cos(x) = +4/5
500
Establish the identity tanx – tany = (sin(x-y))/((cosx)(cosy))
(sin(x-y))/((cosx)(cosy)) = (sinx(cosy) - cosx(siny))/((cosx)(cosy)) = (sinx (cosy))/((cosx)(cosy)) – (cosx(siny))/((cosx)(cosy)) = tanx(1) – 1(tany) = tanx – tany = tanx – tany QED
500
Prove that cosx/(1+sinx) + (1+sinx)/cosx = 2secx ?
cosx/(1+sinx) + (1+sinx)/cosx = (cos^2)x/(1+sinx)cosx + (1+sinx)^2/(1+sinx)cosx = ((cos^2)x + (1+sinx)^2) / (1+sinx)cosx = ((cos^2)x + 1 + 2sinx + sin^2x)/(1+sinx)cosx = ((cos^2)x ?+ sin^2x + 1 + 2sinx) /(1+sinx)cosx = 2 + 2sinx/(1+sinx)cosx = 2(1 + sinx)/(1+sinx)cosx = 2/cosx = (2)(1/cosx) = 2secx = 2secx QED
M
e
n
u