Simplifying
Solving
Properties
Inequalities
Literal
100
-3y - 3(y + 6) - 1
-5y - 13
100
(3/4)x - 8 = 4
x = 16
100
Apply the distributive property to 3(y + 5)
3y + 15
100
{Write solution in Interval Notation} - 7 ≤ 3 - 2x < 13
[-5, 5]
100
Solve for p: P - b ----- = a 2
P = 2a + b
200
-(x - 5) + 2x - 10
x - 5
200
4b - 2(b - 7) - 3(2 - 5b) = 161
b = 9
200
What is the property used here: (x + 3)(4 + ab) → (x + 3)(4 + ba) {Cx = Commutative of Multiplication C+ = Commutative of Addition D = Distributive A = Associative }
Cx
200
{Write solution in Interval} 5(x + 4) ≥ 5 and 2(x + 4) < 12
[-3, 2)
200
Solve for y: x - y z = ------ 2
y = 2z - x
300
2[3(y - 2) - (y - 1)]
4y - 10
300
3(4 + 4f) = 10 + 12f + 2
infinite
300
Is it Commutative of Addition or Multiplication In: (4 + xb)^c = 2n + 3 / 4x * [3 + 2xcv * (2 / 9)] → (4 + xb)^c = 2n + 3 / 4x * [3 + 2xvc * (2 / 9)] {* for Multiplication; + for Addition}
*
300
8 ≥ -2(x - 9) ≥ -8
[5, 13]
300
Solve for D: D -- = t r
D = rt
400
-9n - n - 3m
-10n - 3m
400
.02(x + 5) = 8
x = 395
400
Which property of equations is shown here: 2x + 3 = y → y = 2x + 3
Symmetric
400
{answer in interval} 5x + 2 ≥ 27 and 3x - 1 < 29
[5, 10)
400
Solve for x: x y = -2 + -- 4
x = 4y + 8
500
2r - 3s - t + 3t + 3s
2r + 2t
500
3(y - 3) - 6(y + 1) = 4(3y + 4) - 2(8 + 6y)
y = 9
500
What property is shown here: 2x + 1 = 1 * (2x + 1)
Identity
500
{Answer in Interval Notation} 8 < a + 6 < 12
(2, 6)
500
Solve for x: x - y m = ------- 3
y = 3m + y
M
e
n
u