Geometric Sequences
Rational Exponents
Simplifying Roots
Solving Exponential EQs
Function Transformations
100

What are the next three terms of the sequence 6,  18,  54,  ... ?

162,  486,  1458

100

Express in radical form: 2^(1/2)

√2

100

√25

5

100

Solve:

5^(x-1) = 5^4

x = 5

100

Name the parent function:

y = 5 * 2^(x+2) - 6

y = 2^x

200

Write an explicit formula for the sequence 5,  10,  20,  40,  ...

g_n = 5 * (2)^(n-1)

200

Express using Rational Powers:

(A)  3√(4)^5

(B)  5√(3)^4

(A)  4^(5/3)

(B)  3^(4/5)

200

Create a factor tree for the value 100.

Answers vary, 100 = 2^2 * 5^2

200

Solve:

2^(3x) = 4

x = (2/3)

200

Name the transformation:

y =  2^x + 10

Translate Up 10 Units

300

Is the following sequence geometric? Justify your answer.

60,  36,  21.6,  12.96,  ...

Yes, there is a common ratio (multiplyer) of 0.6)

300

Express using a rational power in simplest form:

4√(7)^8

7^2  or  49

300

Simplify √32

4√2

300

Solve:

3^(2x + 1) = 27

x = 1

300

Name every transformation:

y = - 2^(x - 3) + 1

- Reflection over x-axis (flip)

- Translate Right 3 Units

- Translate Up 1 Unit

400

Rewrite the explicit geometric formula in function form:

g_n = 4 * (1/2)^(n-1) 

y = 8(1/2)^x

400

Simplify and then rewrite in radical form:

2^(1/3) * 2^(1/3)

2^(2/3) = √(2)^3

400

Simplify √700

10√7

400

Solve:

2^(5x) = 1024

x = 2

400

Identify each transformation, the domain and range, and name the asymptote of the graph:

y = - 3^(x+1) - 2

- Reflection over x-axis (flip)

- Translate Left 1 Unit

- Translate Down 2 Units

Domain : All real numbers

Range: y < -2

Asymptote: y = -2

500

Write a function that contains the points (0,3)  (1,6)  and (2, 12).

g_n = 3 * 2^x

500

Express in radical form, then simplify your answer.

4^(3/2)

√(4)^3 = √64 = 8

500

Simplify √(768x^2)

16x√3

500

5^(3x - 6) = 3125

x = (11/3)

500

Sketch an accurate graph of y = 2^x - 4 along with its parent function. Label the asymptotes. Identify the domain and range.

Good luck bro

M
e
n
u