Simplifying radicals with and without variables
Adding/Subtracting/Multiplying/Dividing radicals
Multiply binomials
Finding the greatest common factor (GCF) of a quadratic equation
Factoring Quadratics
100

√225

15

100

8√3 + 6√3

14√3

100

(–9p + 11)(6p – 3)

–54p2 + 93p – 33

100

8x- 40x + 20

4(2x- 10 + 5)

100

v2 + 5v + 6 = 0

v = –3 ; v = –2

200

√361

19

200

–10√2 × 15√2

-300
200

(6x + 9)(6x – 9)

36x2 – 81

200

-6x+ 30x - 54

-6(x- 5x + 9)

200

g2 – 3g = 4

g = –1 ; g = 4

300

√98

7√2

300

13√5 + 14√5

27√5

300

(–7q6 – q4)(–2q2 – q5)

7q11 + q9 + 14q8 + 2q6

300

22x+ 84x - 16

2(11x+ 42x - 8)

300

w2 + 4w = 0

w = –4 ; w = 0

400

5√432

60√3

400

9√7 – 17√7

–8√7

400

(–5y4 – y5)(–8y5 + 2y6)

–2y11 – 2y10 + 40y9

400

-21x+ 42x - 49

-7(3x- 6x + 7)

400

s2 – 8s + 12 = 0

s = 2 ; s = 6

500

–6√75

–30√3

500

8√3 × 3√9

72

500

(11w6 + w3)(5w3 + 1)

55w9 + 16w6 + w3

500

6x+ 12x - 18

6(x+ 2x - 3)

500

x2 + 2x – 35 = 0

x = –7 ; x = 5

M
e
n
u