Simplifying radicals with and without variables
√225
15
8√3 + 6√3
14√3
(–9p + 11)(6p – 3)
–54p2 + 93p – 33
8x2 - 40x + 20
4(2x2 - 10 + 5)
v2 + 5v + 6 = 0
v = –3 ; v = –2
√361
19
–10√2 × 15√2
(6x + 9)(6x – 9)
36x2 – 81
-6x2 + 30x - 54
-6(x2 - 5x + 9)
g2 – 3g = 4
g = –1 ; g = 4
√98
7√2
13√5 + 14√5
27√5
(–7q6 – q4)(–2q2 – q5)
7q11 + q9 + 14q8 + 2q6
22x2 + 84x - 16
2(11x2 + 42x - 8)
w2 + 4w = 0
w = –4 ; w = 0
5√432
60√3
9√7 – 17√7
–8√7
(–5y4 – y5)(–8y5 + 2y6)
–2y11 – 2y10 + 40y9
-21x2 + 42x - 49
-7(3x2 - 6x + 7)
s2 – 8s + 12 = 0
s = 2 ; s = 6
–6√75
–30√3
8√3 × 3√9
72
(11w6 + w3)(5w3 + 1)
55w9 + 16w6 + w3
6x2 + 12x - 18
6(x2 + 2x - 3)
x2 + 2x – 35 = 0
x = –7 ; x = 5