Real Number Operations
Distributive Property
Simplify Expressions/Order of Operations
Evaluate Expressions
Real Numbers/Reasoning
100

3/4 +(-5/6)

- 1/12

100

Simplify.

-(7m - 14) 

-7m + 14

100

(22 - 2n)/2

11 - n

100

Evaluate the expression for p = 5 and = -3.

2q ÷ 4p

-3/10

100

Simplify. 

√(1/36)

1/6

200

5.1 + (-0.7)

4.4

200

Simplify.

-2(x+1)

-2x + -2 or -2x - 2

200

(6/5) * (-10 * 8)

-96

200

Evaluate the expression for m =-4, n = 5, and 

p = -1.5.

-m + n - p

10.5

200

Classify. 

10/2

5

Natural, Whole, Integer, Rational, Real

300

(-2/9)²

4/81

300

Combine like terms.

-2ab + ab+ 9ab - 3ab

5ab

300

(25/5) - l 17 - 34 l

-12

300

Evaluate the expression for m = -5, n= 3/2, and 

p = -8.

2p²(-n)÷m

38 2/5 or 38.4

300

Estimate.

√94

≈10

400

-5 ÷ (-5/3)

3

400

Simplify.

(1/3)(6x -1)

2x - (1/3)

400

-6(12 - 7g) + 3(11g - 7)

75g - 93

400

Evaluate each expression for a = 2, h = 5, and w = 8.

(w2h - a2) + 12 ÷ 3a

318

400

Tell whether the expressions in each pair are equivalent.

2+h+4 and 2*h*4

They are not equivalent.  If h=3

2+3+4 = 2*3*4

9 ≠ 24

500

75 ÷ (-0.3)

-250

500

Simplify.

(-8z - 10)(-1.5)

12z + 15

500

32/((-2)3 + 12)

8

500

Evaluate each expression for c = -3 and d = 5.

(2 + d)2 - (3c)3

778

500

Determine if the statement is true of false. If false, create a counterexample to prove it is false.

For all real numbers a and b; -a * b = a *(-b)

This statement is true because it is an example of the Multiplication Property of -1.

If a = 2 and b = 5;

-2 * 5 = 2 * (-5)

-10 = -10


M
e
n
u