Basic IFS
Memory IFS
Dimension
Applications
100
Generate the IFS of
100
Name the forbidden pairs of
(2,2) (3,2) (4,4)
100
Name the dimension of Sierpinski's gasket.
d = log3/log2
100
Fractal geometry can be used to build fractal shaped, space and weight-efficient ________.
antenna
200
Generate the IFS for
200
Name the forbidden pairs of
(x,5) (4,4) (6,4) (5,x) (4,6) (6,6)
200
Name the dimension of
d= Log((-1 + √(17))/8)/Log(1/2)
200
Fractals can be used as part of a stochastic algorithm to generate _________.
coastlines or terrain
300
Generate the IFS of
300
Name the forbidden pairs of
(x,5) (2,2) (3,2) (4,4) (4,6) (6,4) (7,3) (8,2) (9,1) (7,7)
300
Name the dimension of
d ≈ 1.65196
300
Fractals can be used to predict _______.
Natural disasters
400
Generate the IFS for
400
Name the forbidden pairs of this 4T fractal
(1,1,1) (2,2,2) (3,3,3) (4,4,4)
400
Find the dimension of
d= log(sqrt(2)-1) / (log (1/2)
400
In video game design, fractals can be applied to
improve image compression algorithms, or procedural generation
500
Define the IFS for
500
Give the forbidden pairs of
(1 2 1) (1 3 3) (1 4 3) (2 2 2) (2 3 2) (2 3 4) (2 4 2) (2 4 3) (3 1 4) (3 3 3) (3 4 1) (3 4 3) (4 1 2) (4 2 3) (4 4 3)
500
Give the dimension
d= (log ((sqrt(12) -3)/4)) / (log 1/2)
500
Fractal geometry can be applied to determine the structure of materials in a technique known as
small-angle x-ray scattering.
M
e
n
u