(f + g)(x), if f(x) = 4x + 8 and g(x) = 2x -12(f + g)(x)
6x - 4
(f * g)(x), if f(x) = 4x + 8 and g(x) = 2x - 12
8x2 - 32x - 96
g(f(x)), if f(x) = -3x + 2 and g(x) = x/5
-3x + 2/5
The inverse of the relation:
s = {(3, -1), (5, 1), (3, 3), (2, 1), (0, -2)}
s-1 = {(-1, 3), (1, 5), (3, 3), (1, 2), (-2, 0)}
(f + g)(x), if f(x) = x + 2 and g(x) = 2x2
2x2 + x + 2
(f * g)(x), if f(x) = x + 2 and g(x) = 2x2
2x3 + 4x2
(f 0 g)(x), if f(x) = x - 5 and g(x) = x2
x2 - 5
Inverse of f(x) = x + 2
f-1(x) = x - 2
The domain of (f - g)(x) = 2x + 20
D: All real numbers
(f/g)(x), if f(x) = 4x + 8 and g(x) = 2x - 12
2x + 4/x - 6
(g 0 f)(4), if f(x) = x - 2 and g(x) = x2
4
Inverse of f(x) = 2x - 1/3
f-1(x) = 1/2x + 1/6
(f - g)(x), if f(x) = 2x2 + 8 and g(x) = x - 3 AND its domain
2x2 - x + 11
D: All real numbers
(g/f)(x), if f(x) = x + 2 and g(x) = 2x2
2x2/x + 2
f(g(1)), if f(x) = -3x + 2 and g(x) = x/5
7/5
The domain and range of g(x) = √3x - 9
D: x ≥ 3
R: y ≥ 0
3f(x) + 5g(x), if f(x) = -3x + 2 and g(x) = x/5
-8x + 6
(f/g)(x), if f(x) = x + 2 and g(x) = 2x2 AND its domain
x + 2/2x2
D: All real numbers, except x = 0
(f 0 g)(-5), if f(x) = 3x and g(x) =(x + 2)2
27
g(x) = x + 7
No