Functions
Inverse of a Function
Composite Functions
Composite Inverse
Variation
100

The function f is defined by f(x) = x^2 + 5.

Do you agree that f(3) = 14? True or False?

True

100

If f(x) = 7x - 5, determine f^-1(x)

f^-1(x) = (x+5)/7

100

If f(x) = 9 + x and g (x) = x^3, calculate fg(x)

fg(x) = 9 + x^3

100

If f(x) = 2x + 1 and g (x) = x^2, calculate (fg)^-1(x)

(fg)^1(x) = sqrt((x-1)/2)

100

If y is directly proportional to x, and y = 10 when x = 2.5, determine the value of k

k = 4

200

Evaluate x, if g(x)=26 and g(x)=3(x-1) + 2

x = 9

200

Given h(x) = (5x-1)/(3x+1), write an expression for h^-1(x)

h^-1(x) = (x+1)/(5-2x)

200

If f(x) = 3x - 2 and g (x) = 2x + 5, calculate fg(3)

fg(3) = 31

200

If f(x) = 2x + 1 and g (x) = 3x-2, calculate (fg)^1(x)

(fg)^1(x) = (x + 3)/6

200

If y is directly proportional to x, and y = 10 when x = 15, determine the value of y when x = 21

y = 14

300

If f(x)= (1/2)(4x-1), calculate the value of f(-2)

f(-2) = -4.5

300

The function g is defined as g(x) = x^3. Determine an expression for g^-1(x)

g^-1(x) = x^(1/3) or the cube root of x

300

If g(x) = (2x + 1)/(x - 1) and h(x) = (4x+3)/(x - 2), calculate gh(-2)

gh(-2) = 14

300

If f(x) = x - 3 and g (x) = 4x + 1, calculate f^-1g^-1(-3)

f^-1g^-1(-3) = 2

300

If y is inversely proportional to x^2, and y = 5 when x = 4, determine the positive value of x when y =20

x = 2

400

Given the function f(x) = 3x^2 + 2x - 1. Evaluate f(-1)

f(-1) = 0

400

The function g(x) = (4x+1)/(3x-2), find the inverse of g(x) and determine the value of g^-1(1)

g^-1(x) = (2x+1)/(3x-4)

g^-1(1) = -3

400

If f(x) = 2x + 1 and g(x) = (3x - 1)/(2x + 1), calculate gf(1/2)

gf(1/2) = 1

400

If f(x) = 2x + 1 and h(x) = 4x, calculate fh^-1(x)

fh^-1(x) = (x - 1)/8

400

If y is directly proportional to x, and y = 36 when x = 12, determine the value of y when x = 24

y = 72

500

Given g(x) = (3x-1)/(x+2) and h(x) = (7x+1)/(5x-2). Find g(3) and h(2)

g(3) = 8/5

h(2) = 15/8

500

If h(x) = (3x+5)/(x+5) and its inverse is calculated to be h^1(x) = (5x-5)/(3-x).

Calculate h(x) = 2

Also, state the real value of x which cannot be in the domain of h(x)

When h(x)=2, x = 5

The real value which cannot be in the domain of h(x) is x cannot be equal to -5

500

If f(x) = x^3, h(x) = 2x + 1 and g(x) = x - 3, calculate fgh(x)

fgh(x) = (2x - 2)^3

500

If f(x) = 3x, h(x) = x + 1 and g(x) = 4x - 3, calculate (fgh)^-1(x)

(fgh)^-1(x) = (x - 3)/12

500

If y is inversely proportional to the cube of x, and y = 8 when x = 3, determine the value of y when x = 6

k = 216

y = 1

M
e
n
u