Unit 1: Intro to Logic and Euclidean Geometry
Unit 2: Coordinate Geometry and Transformations
Unit 3: Relationships of Lines and Transversals
Unit 4A: Relationships in Triangles
Unit 4B: Similarity
100

Name a point collinear to V

S or W

100

Given a line segment TR with endpoints T(-1,3) and R( 7,-1). Find the midpoint of TR?

(3,1)

100

Given two parallel lines cut by a transversal, which 3 angle pairs are congruent?

corresponding, alternate interior and alternate exterior

100

Solve for x.

x=7

100

Find m<A


41

200

Give another name for plane P

Plane URS or UST (3 non-collinear points) 

200

Find the length of GH if G is (2,8) and H is (-3,1)

square root 74


200

Given two parallel lines are cut by a transversal, which 2 angle pairs are supplementary?

same side interior, same side exterior

200

Solve for x. 

x=9

200

Find DE.

DE=37

300

The intersection of line b and plane P

Point S

300

If A is (2, -3) and it is translated with the following rule (x-6, y+8), what are the coordinates of A'?

(-4, 5)

300

Solve for x. 

24

300

Which congruency theorem proves triangle CEF is congruent to triangle DEF?

side-side-side

300

Find TA/

24

400

Give a counter-example for the following statement: All composite numbers are greater than 5.

4 is less than 5 and is a composite number

400

Write an equation parallel to y=5/2x+3, through the following point (4,9).

y=5/2x-1

400

Solve for x.

x=19

400

Which congruency theorem proves triangle DAJ is congruent to triangle EAM?

Angle-side-angle or side-angle-side

400

What theorem proves the triangles are similar.

SSS

500

What is the contra-positive of this statement: If two angles are complementary then they are each 45 degrees. 

If two angles are not each 45 degrees then they are not complementary. 

500

Write an equation that is perpendicular to y=-3/2x-1, that goes through the point (8, -5)

y=-3/2x+7

500

If angles 3 and 5 are congruent then which theorem proves line p is parallel to q?

alternate interior angles converse

500

Name 5 theorems that prove triangles are congruent.

SSS, SAS, AAS, ASA, HL

500


Solve for x.

x=21

M
e
n
u