Complete the Square
Quadratic Formula
Zero Product Property
Imaginary Numbers
Imaginary Number Equations
100

Solve by completing the square

m2 + 30m + 11 = 0

(m+15)2=225

m=-0.37 or -29.63

100

Solve using quadratic formula

7x+ 9x + 2 = 0

x = -0.28 or -1

100

Solve using Zero Product Property.

(x+3)(x-8)=0

x= -3 or 8

100

What number replaces i2?

-1

100

x2 = -25

x= 5i and -5i

200

Solve by completing the square

x2+4x+4=0

(x+2)2=0

x=-2

200

Solve using the quadratic formula 

4x2 + 4x - 7 = 0

x= 0.91 or -1.91

200

(x+2)= 0

x=-2

200

-4i + 6i = ?

2i

200

x2 + 50 = 14

x = 6i and -6i

300

Solve by completing the square

x2 − 26x = –25

(x-13)2=144

x= 25 or x=1

300

Solve using the Quadratic Formula. 

3x2+6x+3=0

x= -1

300

Solve using Zero Product Property.

x2+3x-18=0

x= -6 or 3

300

(2i)(5i) = ? 

-10

300

100x+ 46 = 30

x = 4i/10 and -4i/10

400

Solve by completing the square

u2 − 2u = 3

(u-1)2=3

u= 3 or -1

400

Solve using the Quadratic Formula. 

–9x2 + 8x + 3 = 0

x= -0.28 or 1.17

400

Solve using Zero Product Property.

5x(3x+1) = 0

x= 0 or -1/3

400

-3i(4 + 2i) = 

-12i+6  or  6-12i

400

Solve by completing the square. 

x2+6x+13=0

(x+3)2=-4

x= -3+2i or -3-2i

500

Solve by completing the square

w2 + 20w + 41 =5

(w+10)2=64

w= -2 or -18

500

Solve using quadratic formula

8x2 - 5x - 1 = 3

x= 1.09 or -0.46

500

(-2x+6)(3x-3)=0

x= 3 or 1

500

4(3i)2 = 

36

500

Solve by using the Quadratic Formula.

3x2-6x+6 = 0

x = 1+i and 1-i

M
e
n
u