Linear Systems
Quadratic Expressions and Relations
Quadratic Equations
Trigonometry
100

In the form y=mx+b what is the equation when the slope is 6 and the y intercept is 2 

y=6x+2

100

   Find the domain and range of this parabola

x ∈ R

{ y ∈ R | y ≥ -4 }

100

Using  the Zero Product Property to solve the following quadratic equation. (x - 3)(x + 8) = 0

x - 3 = 0 ---> x = 3 

x + 8= 0 ---> x = -8

100

Rounded to the nearest hundredth what is cos38 

0.96

200

Solve the following linear system by using Substitution

5x + y =10

10x - y = 5 

Finding X                                Finding Y

y= -5x + 10                           y = -5 (1) + 10 

10x - y = 5                             y = -5 + 10

10x - (-5x + 10) = 5                 y = 5 

10x + 5x - 10 = 5            x=1 and y= 5

15x = 5 + 10

15x = 15

x = 1

200

Expand the following using foil (x+3)(x+7)

= x+ 7x + 3x + 21

= x+ 10x + 21

200

Solve the following quadratic equation by factoring 

n2 + 8n = −15

a=1 b=8 c= 15      5 + 3 =8    5 x 3 =15

n2 + 8n +15 = 0

n2 + 5n + 3n +15 = 0

(n2 +5n) + (3n +15) = 0

n(n + 5) + 3(n + 5) =0

n + 3 = 0 ---> n= -3

n + 5 = 0 ---> n2 = -5


200

 Find the Missing side length 

Cos43= A/H

Cos43o = 35/H

0.55 = 35/H

0.55H = 35

H = 35/0.55

H = 63

300

Solve the following linear system by using elimination 

 −4x + 9y = 9

  x − 3y = −6

Solving for Y             Solving for X         

-4x + 9y = 9            x - 3y = -6

 4x + 12y = -24       x - 3(5) = -6

-3y = -15                 x - 15 = -6

y = 5                       x = -6 + 15

                               x = 9

 x = 9 and y = 5

300

Factor the following Expression Fully if possible 

8x- 11x + 3

a= 8    b=-11   c= 3   ac= 24                 

-8 + -3 = -11

-8 + -3 = -24

8x2 -11x +3

=(8x-3x)(-8x +3)  

=x(8x-3) -1(8x - 3)           

=(8x - 3) ( x - 1) 


300

Solve the following equation using the Quadratic Formula 

2x2 + 2x − 12 = 0

x = (-b ± √b2 - 4ac)/2a

x = (-2 ± √22 - 4(2)(-12))/2(2)

x = (-2 ± √1 - 4(-24))/4

x = (-2 ± √4 + 24)/4

x = (-2 ± √100)/4

x = (-2 ± 10)/4

x1 = (-2 - 10)/4

x= (-12)/4

x1 = -3

x= (-2 + 10)/4

x2 = (8)/4

x2 = 2

Therefore x1=-3 and x2= 2

300

Find the missing side length using Sine Law. Round to the nearest whole number 

x/sin80= 7/Sin60o

x/0.98 = 7/ 0.86

x = (7 x 0.98)/0.86

x =  7.9

x = 8

400

Solve the following Linear System using substitution

-3x + 3y = 4 

-x + y = 3


 There is No solution 

400

State the Specifics and Transformations of the Quadratic Expression

y = 1/5(x + 5)2 + 8

Specifics                     

Direction of Opening: UP

Max/Min: MIN

Vertex: (-5,8)

Optimal Value: 8

AOS: x=-5

Y-intercept: 13

 Transformations

Compressed by a factor of 1/5

Shifted 5 units to the left

Shifted 8 units up

400

Expand, Simplify and solve using the quadratic formula round to the nearest whole number if necessary 

(k - 10)(k + 2)

(k + 10)(k - 2)

= k2 - 2k + 10k - 20

= k2 + 8k - 20

a = 1 b= 8 c =-20

x= (-b ± √b2 - 4ac)/2a

x= (-8 ± √82 - 4(1)(-20))/2(1)

x= (-8 ± √82 + 80)/2

x= (-8 ± √64 + 80)/2

x= (-8 ± √144)/2

x= ( -8 ± 12)/2

x1= (-8 + 12)/2      x2= (-8 - 12)/2

x1= 4/2                   x2= -20/2

x1= 3.48                      x2= -10

x1= 2                           

400

Find side C using Cosines Law round to the nearest whole number if necessary

c2= a2 + b2 − 2ab cosC

c2 = 82 + 112 − 2 × 8 × 11 × cos37º

c2 = 64 + 121 − 176 × 0.79  

c2 = 45.96

√c= √45.96

c = 6.77

c = 7

500

You saved up some money after working for a few months. Yo now $3000 to invest, and you've decided to put some of the money in BMO which is offering a 3% interest, and the rest of the money in TD which is offering a 4% interest. If the total amount of interest you earn for both banks is $65 how much  money did you put in each bank. 

Let X be the amount of money you put in BMO

Let Y be the amount of money you put in TD

 L1x + y = 3000    L2(.03x + 0.04y = 65) x 100   

Finding Y                  Finding X

 x + y = 3000             x + y = 3000     

3x + 4y = 6500          x + 2500 = 3000

3x + 3y = 9000          x= 3000-2500      

3x + 4y = 6500          x = 500

y = 2500             Therefore you put $2500 in TD and 500 in BMO

500

Write an equation in STANDARD FORM for the quadratic relation which results from each transformation and specific 

Reflected on the x-axis

Stretched by a factor of six

Shifted 4 units left

Shifted 2 units up 

Direction of opening: down

Vertex: (-4,2)

Max/Min: Max

Y intercept: -94

Optimal Value: 2 

AOS: x= -4

y= -6x- 45x - 94

500

A ball is thrown into the air from a window of a apartment and falls to the ground. The height of the ball is represented by h meters  and the time the ball is in the air is represented by t seconds. After the ball is thrown you are given this formula                 h =4x2 + 17x - 15= 0 How long does it take for the ball to hit the ground. Round the the nearest hundredth if necessary.

a=4 b=17 c=-15

x= (-b ± √b-4ac)/2a

x= (-17 ± √172 -4(4)(-15))/2(4)

x= (-17 ± √289 + 240)/8

x= (-17 ± √529)/8

x1= (-17 + 23 )/8       x2 = (-17 - 23)/8

x= 6/8                     x2 = -40/8

x1 = 0.75                   x2 = -5

it will take 0.75 seconds for the ball to hit the ground




500

Tom looks up at the top of a building at an angle of elevation of 62.8o. He looks down at the bottom of the building at an angle of depression of 37.9o. If Tom is standing 10 meters away from the building. How tall is the building?  

Tan62.8o = O/A         Tan37.9o = O/A 

1.94 = O/10             0.77 = O/10            

19.4 = O                  7.7  = O

19.4 + 7.7 = 27.1    Therefore the building is 27.1 Meters tall

M
e
n
u