Non-Linear Relations
Properties of Quadratics
Transformations
Graphing Quadratics
Quadratic Relations in Factored Form
100

Identify whether the graph of 

"y= -3x2 + 6x + 2

is linear or non-linear

Non-linear. The equation represents a quadratic, non-linear relation.

100

What is the name of the shape of a quadratic graph?

The shape is called a parabola

100

What transformation does the "k" value in "y = (x - h)2 + k" represent?

The k value represents a vertical shift: if k>0, the graph shifts up; if k<0, it shifts down.

100

What is the step pattern using the variable "a"

1a, 3a, 5a, 7a, ...

100

Find the zeros of 

"y = (x−2)(x+5)"

The zeros are x = 2 and x = -5.

200

Complete the differences table below, and determine the type of relation and why.

x    y          First diff          Second diff

-2    8             -                        -

-1    6             -                        -

0    4             -                        -

1    2             -                        -

2    0             -                        -

Linear because the 1st diff are the same

x    y          First diff          Second diff

-2    8            -2                        0

-1    6            -2                        0

0    4             -2                        0

1    2             -2                        

2    0                                    

200

Find the vertex of 

"y = (x - 2)2 + 3"

The vertex is (2, 3).

200

What transformation does the "h" value in "y = (x - h)2 + k" represent?

The h value represents a horizontal shift: if h>0, the graph shifts right; if h<0, it shifts left.

200

Write how the x and y values are transformed in mapping notation. (Hint: the second table)

x+h, ay+k

200

How can the axis of symmetry be used to help find the vertex?

sub in the midpoint value (axis of symmetry) for x into the relation

300

Complete the differences table below, and determine the type of relation and why.

x    y          First diff          Second diff

0    33.5             -                        -

2    9.5             -                        -

4    -2.5             -                        -

6    -2.5             -                        -

8    9.5             -                        -

Quadratic because the 2nd diff are the same


x    y          First diff          Second diff

0    33.5            -24                    12

2    9.5              -12                    12

4    -2.5             0                       12

6    -2.5             12                         

8    9.5                                           

300

Describe what the value of "a" in 

"y= ax2 + bx + c" 

tells you about the direction of the graph's opening.

The value of "a" tells you whether the parabola opens upward (if a>0) or downward (if a<0).

300

Describe the transformations in 

"y = 3(x - 2)2 + 5

compared to the parent function "y = x2"

Shifted right by 2 units (because h=2).

Shifted up by 5 units (because k=5).

Vertically stretched bafo 3 (because a=3).

300

If "a = −3" in 

"y = a(x - 2)2 - 1"

describe the steps to graph it starting from the vertex, and explain the changes in the parabola’s shape.

The vertex is (2, -1). The step pattern is -3, -9, -15. Start from (2, -1) and apply the reflected, stretched step pattern.

300

Given "y = (x−1)(x+4)"

find its zeros and vertex, and graph the equation.

Zeros: x=1, x=−4. 

Axis of symmetry: halfway between the zeros, x=−1.5. 

Vertex: (−1.5,−6.25).

400

Complete the differences table below, and determine the type of relation and why.

x    y          First diff          Second diff

-3    0             -                        -

-2    4             -                        -

-1    5             -                        -

0    7              -                        -

1    10             -                        -

2    14             -                        -

3    15             -                        -

Neither because the 1st and 2nd diff are not the same

x    y          First diff          Second diff

-3    0             4                      -3

-2    4             1                       1

-1    5             2                       1

0    7              3                       1

1    10             4                      -3

2    14             1                         

3    15                                         

400

Find the axis of symmetry and vertex for 

"y = -2(x + 4)2 + 5" 

and explain what the graph looks like.

The axis of symmetry is x=−4.

The vertex is (-4,5).

The parabola opens downward and is vertically stretched by a factor of 2.

400

Describe the transformations of 

"y = -2(x + 3)2 - 4"

compared to the parent function "y = x2"

Reflected on the x-axis (because a=−2).

Vertically stretched bafo of 2.

Shifted left by 3 units (because h=−3).

Shifted down by 4 units (because k=−4).

400

Graph "y = 1/2(x - 1)2 + 3" 

using mapping notation. (Specify the second table and how the x and y values are transformed)

x+1, 1/2y+3


x     y                  x+1           1/2y+3

-2    4                   -1                5

-1    1                    0                3.5

 0    0                    1                3

 1    1                    2                3.5

 2    4                    3                5

400

Determine the equation, in factored form, for the parabola shown below:

y = a(x-r)(x-s)

y = a(x+0)(x-4)

sub a point from the graph (vertex)

2 = a(2+0)(2-4)

2 = a(2)(-2)

2 = a(-4)

a = -0.5


Therefore: y = -0.5(x)(x-4)

M
e
n
u