Quadratics
Exponents
Factoring
Expanding
More Exponents
100

Given:

y = 5(x - 4)2 - 7 

What is the vertex?

(4, -7)

100

y. y3

y8

100

Factor:

x2 - 49

(x - 7)(x+7)

100

Expand and simplify:

(x - 4) (x +3)

x2 - x -12

100

Simplify:

x12 / x3

x9

200

Given:

y = -4(x + 6)(x - 3)

What is the axis of symmetry?

x = - 1.5

200

(6x2)(2x3)

12x5

200

Factor:

x- 9x +14

(x - 7)(x -2)

200

Expand and simplify:

(x - 3)2

x2 -6x + 9

200

(5y2)2

25y4

300

Consider:

y = 5(x +2)2

What is the y-intercept?

y-intercept = 20

300

(9x4y3)(3x2y4)

27x6y7

300

5x2 - 45

5(x - 3)(x + 3)

300

Expand and simplify:

5(x +3)(x - 4) - 3

5x2 -5x -63

300

(4x5y3)2/(2xy2)

8x9y4

400

Consider:

y = x-12x - 28

Rewrite this equation in factored form. 

y = (x + 2)(x - 14)

400

Solve for b. 

(3xby3)(5x-7y5) = 15x5y8

b = 12

400

Factor completely:

3x2 - 15x + 12

3(x - 4)(x - 1)

400

Solve for b. 

(3x - 5)(2x - 7) = 6x2 +bx +35

b = -31

400

Solve for x. 

7x-4=712 x 78

x =16

500

Consider:

y = -7(x + 1) (x -7)

What is the vertex?


Vertex:  (3, 112)

500
Divide:

(36x7y5z) / (-6x-2y3)

-6x9y2z

500

Factor:

25x2 - 36

(5x - 6)(5x + 6) 

500

Solve for c. 

(6x - 9)(2x +5) = 12x2 + 12x + c

c = -45

500

23x - 5 = 4x+2

x = 9

M
e
n
u