Unit 1: Functions
Unit 2: rational expressions
Unit 3: Exponential Functions
Unit 4: Trigonometry
Unit 5: Trigonometric Functions
100

What is the vertical line test?

When on a grid, the image only has one point at any given time passes through a vertical line.

100

simplify

18/4

9/2

100

Power of a power

(xayb)c

xacybc

100

When given a right angle triangle, what do we use to find missing sides and angles?

SOH CAH TOA

100

Domain for any sine or cosine curve

{xR}

200

What is the base equation for a rational function?

y=1/x

200

Simplify

2/5 ÷ 1/4

= 2/5 x 4/1

=8/5

200

Simplify

(3a3b)2(2pq2)3

=(9p3q2)(8p3q6)

=72p9q8

200

Which of the following is a special angle of the unit circle?

A)210

B)200

C)190

D)342

A)210

200

The maximum value of the function y = sin x - 6 is...

-5

300

Simplify the radical expression

(√3 - 2√2) (√2 - √3)

=√6 - 3 - 2(2) - 2√6

= -√6 - 7

300

Simplify

6x-10

5-3x

= -2(-3x+5)

     5-3x

= -2

300

What is a asymptote?

An invisible line that the function will never cross.

300

What is the cosine law formula we use when trying to find a missing side?

a2=b2+c2-2bc cos(A)

300

Describe the transformations

y=6 sin [2(x+22)]+7

Vertical stretch by a factor of 6

Horizontal compression by a factor of 1/2

Phase shift 22° left

Translate 5 units up

400

Rewrite the equation in vertex form

f(x)= 3x2+8x+2

f(x)= -2x2+8x-3

f(x)= -2(x2+4x)-3

f(x)=−2(x2−4x+4)+8−3 

f(x)=−2(x−2)2+5 

Vertex = (2,5)

400

Describe the transformation

y = -3(x-7)2-6

Reflection in the x-axis

Vertical stretch by a factor of 3

Translate 7 units right and 6 units up

400

Solve

811/2

=9

400

When do you use sine law?

when we are given either a) two angles and one side, or b) two sides and a non-included angle.

400

A cosine function has a period of 45°, is reflected across the x axis, and has a amplitude of 4. Determine its equation.

y = -4 cos 8x

500

Simplify

8√ 3+5√ 12-2√ 75


=8√ 3+5√ 4x3 - 2√ 25x3

=8√ 2+10√ 3 - 10√ 3

=8√2

500

determine the equation in inverse

y=(x+8)2

x=(y+8)2

√x-8=y

500

Simplify

√√16m8

=(16m8/2)1/2

=16m8/4

=2m2
500

Given that sin A=3/5 and that angle A lies in the first quadrant, determine the exact values of cos A and Tan A.

x2+32=5             CosA = 4/5

x=4                      TanA = 3/4 


500

Verify the identity

cosθ2-sinθ2 = 2cosθ2-1

LS                  RS

LS= cosθ2-sinθ2

=cosθ2-(1-cosθ2)

=cosθ2-(1+cosθ2)

=2cosθ2-1

LS=RS

M
e
n
u