Lesson 1
Lesson 1-2
Lesson 1-3
Lesson 1-4
Lesson 1-5
100

Simplify.

{4 x ... x 4} 

   7 times

 

47

100

2x2 • 3x9

6x11

100

(93)6 =

918

100

y12 / y12 =

y12-12 = y0 = 1

100

Let f be a nonzero number.

f-4 = ?

1 / f4

200

Simplify.

{(-11.63) x ... x (-11.63)} 

            34 times

(-11.63)34

200

8a5 • 2y3

16a5y3

200

48

--

58

(4/5)8

200

915 x (1 / 915) = 

915 / 915 = 915-15 = 90 = 1

200

671 x 28796-1 = 

671/28796 or .0233

300

Simplify.

{(-1/14) x ... x (-1/14)} 

          10 times

(-1/14)10
300

3x3z • 4x3y

12x6zy

300

(1132 x 37 x 514)3 =

1136 x 373 x 5112

300

Simplify the following expression as much as possible.

(410 / 410) x 70 = 

1

300

Compute 33 x 32 x 31 x 30 x 3-1 x 3-2

3= 27
400

Simplify.

{x⋅x...x} 

185 times

x185

400

12xy

-------

3x4y2

4

--

x3

400

Let x,y,z be numbers. 

(x2yz4)3 =

x6y3z12

400

x41                y15

--       x     --        = 

y15                x41

x41y15              x41                  y15

-------     =   --        x     --        = x0y= 1x1 = 1

y15x41              x41                  y15

400

Show that (17.6-1)= 17.6-8

By the power to a power rule:

(17.6-1)= 17.6-1 x 8 = 17.6-8

By the negative power rule:

(17.6-1)= (1/17.6)8 = 18 / 17.6

= 1 / 17.68 = 17.6-8

500

Simplify.

{x⋅x...x} = xn

    ______ times

n times

500

4x5y3

------

20x3y4

x2

-----

5y

500

Let x,y,z be numbers and let m,n,p,q be positive integers. 

(xmynzp)q

xmqynqzpq

500

Let a and b be two numbers. Use the distributive law and then the definition of zeroth power to show that the numbers (a0 + b0)a0 and (a0 + b0)b0 are equal.

(a0 + b0)a0= ax a0 + b0 x a= a0+0 + a0b0

= 1 + 1 x 1 = 1 + 1 = 2

 (a0 + b0)b0 = ax b0 + bx b0 = a0b0 + b0+0

= 1 x 1 + 1 = 1 + 1 = 2

Since both numbers are equal to 2, they are equal.

500

Show that (2.8-5 / 2.87) = 2.8-12

2.8-5 = 1/2.85

1/2.8x 1/2.8= 1/(2.8x 2.87) = 1/2.812 = 2.8-12

M
e
n
u