pg. 217 #59:
f(x) = x - 1, g(x) = sqrt(x), h(x) = x - 1
f(g(h(x))) =
pg. 217 #59:
f(x) = x - 1, g(x) = sqrt(x), h(x) = x - 1
f(g(h(x))) = sqrt(x - 1) - 1
pg. 217 #61:
f(x) = x4 + 1, g(x) = x3, h(x) = x2 + 2
f(g(h(x))) =
pg. 217 #61:
f(x) = x4 + 1, g(x) = x3, h(x) = x2 + 2
f(g(h(x))) = (sqrt(x) - 5)4 + 1
pg. 217 #60
f(x) = 1/x, g(x) = x3, h(x) = x2 + 2
f(g(h(x))) =
pg. 217 #60
f(x) = 1/x, g(x) = x3, h(x) = x2 + 2
f(g(h(x))) = 1 / (x6 + 6x4 + 12x2 + 8)
pg. 217 #62
f(x) = sqrt(x), g(x) = x / (x - 1), h(x) = x1/3
f(g(h(x))) =
pg. 217 #62
f(x) = sqrt(x), g(x) = x / (x - 1), h(x) = x1/3
f(g(h(x))) = sqrt(x1/3 / (x1/3 - 1))
pg. 217 #63: Express the function in the form of f(g(x)):
F(x) = (x - 9)5
pg. 217 #63: Express the function in the form of f(g(x)):
F(x) = (x - 9)5
g(x) = x - 9, f(x) = x5
f(g(x)) = (x - 9)5
Find the inverse function of f(x) = (x5 - 3) / 2
Find the inverse function of f(x) = (x5 - 3) / 2
y = (x5 - 3)/2
2y = x5 - 3
x5 = 2y + 3
x = (2y + 3)1/5
f-1(x) = (2x + 3)1/5
Find the inverse function of f(x) = (2x + 3) / (x - 1)
Find the inverse function of f(x) = (2x + 3) / (x - 1)
y(x - 1) = 2x + 3
yx - y = 2x + 3
yx - 2x = y + 3
x(y - 2) = y + 3
x = (y + 3) / (y - 2)
f-1(x) = (x + 3) / (x - 2)
What is the domain and range? f(x) = sqrt(2x + 8)
Domain: [-4, infinity)
Range: [0, infinity)
Give the left and right end behavior: f(x) = 2x4 - 4x3
Give the left and right end behavior: f(x) = 2x4 - 4x3
Left: f(x) -> infinity
Right: f(x) -> infinity
Give the left and right end behavior: f(x) = -x4 - x3 + 2x
Give the left and right end behavior: f(x) = -x4 - x3 + 2x
Left: -infinity
Right: -infinity
Give the left and right end behavior: x3 + 2x2 - x2 - x5
Give the left and right end behavior: x3 + 2x2 - x2 - x5
Left: infinity
Right: -infinity
Give the left and right end behavior:
f(x) = (2x4 - 6x3 + 4x2 - 7x + 2) / (2x2 + 4x4 - 8x + 8)
Give the left and right end behavior:
f(x) = (2x4 - 6x3 + 4x2 - 7x + 2) / (2x2 + 4x4 - 8x + 8)
Left: 1/2
Right: 1/2
Give the left and right end behavior:
f(x) = (x+3)(x-4)(5+x)
Give the left and right end behavior:
f(x) = (x+3)(x-4)(5+x)
Left: -infinity
Right: infinity
f(x) = 2+x, g(x) = x2 - 4
Find (f+g)(x)
f(x) = 2+x, g(x) = x2 - 4
(f+g)(x) = x2 + x - 2
f(x) = 2+x, g(x) = x2 - 4
Find (fg)(x) =
f(x) = 2+x, g(x) = x2 - 4
Find (fg)(x) = x3 + 2x2 - 4x - 8
what's my middle name
Stefan
Write the domain and range using set notation:
f(x) = sqrt(5x - 6) / sqrt(2x + 8)
f(x) = sqrt(5x - 6) / sqrt(2x + 8)
Domain: [6/5, infinity)
Range: [0, sqrt(5/2))
Write the domain and range using set notation:
f(x) = sqrt(3x - 2) / (x2 - 2x - 15)
f(x) = sqrt(3x - 2) / (x2 - 2x - 15)
Domain: [2/3, 5) U (5, infinity)
Range: (-infinity, infinity)
Give the left and right end behavior: f(x) = 3x2 / 2x5
Give the left and right end behavior: f(x) = 3x2 / 2x5
Left: 0
Right: 0
Give the left and right end behavior: f(x) = 3x2 / 2
Give the left and right end behavior: f(x) = 3x2 / 2
Left: infinity
Right: infinity