Average Rate of Change
Difference Quotient
Function Operations
Combining Functions & Applications
Composition of Functions
100

Find the average rate of change of g(x)=3x from x=0 to x=4.

3

100

Find the difference quotient of f(x)=5x2−6.

10x +5h

100

If g(x)=2x2, h(x)=3x, find h+g.

2x2+3x

100

If f(x)=x−5, g(x)=3x2−x, find f⋅g.

(x−5)(3x2−x)=3x3−16x2+5x.

100

If r(x)=2x+1, s(x)=−2x2−2, find s(r(−3)).

r(−3)=−5

⇒s(r(−3))

=s(−5)

=−2(25)−2

=−52.

200

Find the average rate of change of g(x)=2x3−2x2−3 from x=1 to x=2.

8

200

Find the difference quotient of f(x)=−9x+1.

-9

200

If g(x)=2x2, h(x)=3x, find h⋅g.

(3x)(2x2)=6x3

200

Find the domain of g/f where f(x)=x−5, g(x)=3x2−x.

all reals x≠5

200

If f(x)=x+1, g(x)=x2, find f(g(2)).

f(g(2))=f(4)=5.

300

A rocket’s height is given by: H(0)=0, H(2.3)=60. 

Find the average rate of change from 0 to 2.3 seconds.

26.087 m/s

300

Simplify the difference quotient for f(x)=x2+3x.

2x+h+3

300

If h(x)=x−8, g(x)=(x+3)(x+4), find h/g.

h/g=x−8/(x+3)(x+4).

300

A car rental costs S=15.75+0.60M. Insurance costs I=5.70+0.25M. Write C(M), the total cost.

21.45+0.85M.

300

If f(x)=x+1, g(x)=x2, find g(f(2)).

g(f(2))=g(3)=9.

400

For f(x)=x2+2x, find the average rate of change from x=−1 to x=3.

4

400

For f(x)=2x2−4x+1, simplify the difference quotient.

4x+2h-4

400

For  h(x)=x−8, g(x)=(x+3)(x+4), state the values of x that are not in the domain.

Not in domain when denominator =0: x≠−3,−4


400

Sales tax is T(C)=1.07C. Write (T∘C)(M) and find the cost for M=80.

(T∘C)(M)=1.07(21.45+0.85M)=22.9515+0.9095M.

400

If f(x)=2x+14, g(x)=x−2, find f∘g(x).

(f∘g)(x)=2(x−2)+14=2x+10.

500

Which interval shows a greater average rate of change for f(x)=x3: from x=0 to x=2 or from x=2 to x=4?

(0,2)= 4

(2,4)= 28

Greater on (2,4)

500

If f(x)=x2, use the difference quotient to estimate the slope at x=2.

2x+h

slope= 4

500

If h(x)=3x2−5, g(x)=−6x+2, simplify h/g and give its domain.

  • 3x2−5/-6x+2 with domain x=1/3

500

Suppose P(x)=2x+1, Q(x)=x2−4. Write P(Q(x))+Q(P(x)).

P(Q(x))=2(x2−4)+1=2x2−7

Q(P(x))=(2x+1)2−4=4x2+4x−3Q(P(x))=(2x+1)2−4=4x2+4x−3

Sum: 6x2+4x−106x2+4x−10.

500

If g(x)=x−4/x+3, h(x)=4x−7, find the domain of g∘h(x).

(g∘h)(x)=(4x−7)−4/(4x−7)+3

=4x−44x−11

domain x=1 (i.e., (−∞,1)∪(1,∞)).

M
e
n
u