Binary Operations
Factorization & Substitution
Laws of Indices
Simplifying
Bracket Expansion
100

Given a □ b = a^2 - b

What is the value of 3 □ 4 ?

Answer - 5

100

9a^2 b + 3a^2 + 5b + 5b^2 a

= 3a^2 (3b + 1) + 5b( 1 + ba)

100

B^15 ÷ B ^ 9

Answer = B^6

100

4a + 3a + 7b + 5b

Answer= 7a + 12b

100

7(x + 7)

Answer = 7x + 49

200

Given X ♡ Y = 3x - 4y

What is the value of 2 ♡ 6 ? 

Answer= -18

200

X^2 + 2xy + 5x^3 + 10x ^y 

= x(1 + 5x) (x + 2y)

200

C^15 × C^45

Answer = C^60

200

6x - 3y - 2x +7y

Answer = 4x + 4y

200

3( x -7 ) + 4(x - 4)

Answer = 7x - 5

300

Given R ♢ S = 2r + 3s

What is the value of 3♢( 4 ♢ 5 ) ?

Answer = 75

300

Y= 3

6y - 13

Answer = 5

300

B^0

Answer = 1

300

4a + 9b - 2a - 3b

Answer = 2a + 6b

300

5( x- 5) + 3( 2x - 3)

Answer = 11x - 34

400

Given that a♧ b = a- b^2

What is the value of ( 2 ♧ 1 ) ♧ 3 ? 

Answer = -8

400

Y= 3

27- 5y

Answer = 12

400

P^-5

Answer = 1/p^5

400

a^2 + b^2 + 6a^2 - 3b^2

Answer= 7a^2 - 2b^2

400

6( 2x + 4y ) + 5 (3x -6y) 

Answer = 27x - 6y

500

Given that a ☆ b =a^2 + 3b

What is 2☆(3☆4)

Answer= 67

500

Y=3

1/2 y - 1.5

Answer = 0

500

( k^2 × k^-3) ÷ (k^4 ÷ k^-1)

Answer = 1/k^6

500

4a^3 - a - a^3 + 5a 

Answer= 3a^3 + 4a

500

3( a- 2c) + 2(3a - 6c)

Answer = 9a - 18c

M
e
n
u