Solving imaginary Equations
Simplifying Radicals
Add/Subtract/Multiply Complex Numbers
Solving Radical functions
Random!
100

18 - x= 39 



-x= 21  

x2 = -21 

x = +/-  i√21 

100

√(-9)

3i

100

(2+3i) + (4+7i)

What is 6+10i

100

√(10-x)=-8

There is no solution because there is no positive square root that can equal a negative number

100

the square root of -1

i

200

x2+ 13 = 1


x = +/-  2i√3 

200

√(-81)


9i


200
(5+6i) + (4-2i)
What is 9 + 4i
200

3√(x-12)=-4

-52

200

Why do we need imaginary numbers?

To find the square root of negative numbers

300

4x2 + 15  = -9 

  

x = +/-  i√6 

300

8i * 4i

32i= -32 

300

(6+5i)- (3+2i)

What is 3+3i

300

√(x-15)=3

24

300

Simplify:

i2

√-1

i3

-1

i

-i

400

Solve the quadratic equation 

 -3x= 150 

x=  +/-  5i√2

400

√(-4) * √(-9)

√(-4) * √(-9)

i√4 * i√9

2i * 3i 

6i2   = 6 * (-1)  

-6

400

(1 -3i)(2+4i)

14-2i

400

How many solutions does a cubed root have?

1

400

√(36) + √(-36)

6 + 6i

500

Solve using competing the square

(x-5)2=-12

x=√(12)i+5 and -√(12)i+5

500

√(-49) + √(-64)

15i

500
(2+3i)(4+7i)
What is -13+26i
500

√(8-x)+5=2

This expression is equivalent to √(8-x)=-3

so it cannot be solved because a positive square root cannot equal a negative number

500

√(25) + √(-100)

5 + 100i

M
e
n
u