(cosx-1)(sinx+1)=0
x=0+2 k pi
x=3pi/2+2 k pi
cot(x)=cos(x)/sin(x)
reciprocal identity for cotangent
sin 20。cos 40。+ sin 40。sin 20。
root 3 /2
sin2x / (1- cos2x)
2 cotx
2sin2x=1-sinx
pi/6 +2 k pi
5pi/6 +2 k pi
3pi/2 +2 k pi
cos2+sin2=1
pythagorean identity
tan x = -1
-pi/4 + k pi
3pi/4 + k pi
(1 + cotx) / cscx
sin x + cosx
( cscx + secx) / (sinx + cosx) = cotx + tanx
prove both side to be 1 / (sinx cosx)
sin(-x)=- sin x
Even-Odd identity of sin
sin x = 2/3
sin-1(2/3) + 2 k pi
pi - sin-1(2/3) + 2 k pi
2cos (x+ pi/6) + sinx
root 3 (cosx)
sec2 x - cot2 x (pi/2 - x) = 1
sec2 x - cot2 x = 1
Cos(2x)=cos2x - sin2x
Double angle formula
4 sin2 x = 3
+/- pi/3 + 2 k pi
+/- 2pi/3 + 2 k pi
sec2x cotx - cotx
tan x
sin 4x = 8 cos3 x sinx - 4 cosx sinx
1. prove both side to be 4 sinx cosx cos2x
2. prove the left side to be = to the right
sin2x=1-cos(2x)/2
Power-reducing formula for sine
sin x - 1 = cos x
pi + 2 k pi
pi/2 + 2 k pi
(1/ sinx + 1) + (1/ cscx+ 1)
1