Definitions
Areas and Applications
U-Sub
Basic Antiderivatives
Fundamental Theorem of calculus
100

In the definition of the indefinite integral,

∫ f(x) dx = F(x) + C

what is the meaning of the C?

 C is an arbitrary consant. (The constant of integration).

100

Find the exact value of 

int _{-2}^2 |x|dx 

int _{-2}^2 |x|dx =4

100

int (1-1/w)cos(w-ln(w))dw

Rewrite the integral using u-sub!

int (1-1/w)cos(w-ln(w))dw = int cos(u) du

100

int dx

int dx = x+C

100

Evaluate

 \int_2^6 (3x^2+2x+1)dx  

244

200

In the definition of the indefinite integral,

∫ f(x) dx = F(x) + C

what is the meaning of the  F(x) ?

 F(x) is an antiderivative of f(x) . That is, F'(x)=f(x).

200

Estimate the value of  int_1^2 x^2 dx  using 3 equal width, right-end point rectangles. Do not simplify.


int_1^2 x^2 dx\approx (1/3)f(4/3)+(1/3)f(5/3)+(1/3)f(2)

=(1/3)(4/3)^2+(1/3)(5/3)^2+(1/3)(2)^2

200

 int cos(5x)dx 

Rewrite the integral using u-sub!

int cos(5x)dx = 1/5 int cos(u) du

200

\int x^n dx

when n\ne -1 

\int x^n dx = x^{n+1}/{n+1}+C

200

Evaluate

\int_-3^0 d/dt [t^2(1-t^2)]dt 

 \int_-3^0 d/dt [t^2(1-t^2)]dt = 72 

300

Complete the definition:

\int_a^b f(x)dx =

\int_a^b f(x)dx =\lim_{n\to\infty}\Sigma_{i=1}^n f(x_i^*)\Deltax

\int_a^b f(x)dx \text{ represents the net area between a function and the x-axis}

300

Find the exact value of 

\int_{-2}^2\sqrt{4-x^2}dx

\int_{-2}^2\sqrt{4-x^2}dx=2pi

300

 int_0^1 x^2(3-10x^3)^4 dx 

Rewrite the integral using u-sub!

int_0^1 x^2(3-10x^3)^4 dx = -1/30 int _3^-7 u^4 du 

300

int (x^-1+e^x+k)dx

int (x^-1+e^x+k)dx = ln|x|+e^x+kx+C

300

Evaluate

\int_0^pi (2\sin(x)-cos(x))dx

\int_0^pi (2\sin(x)-cos(x))dx=4

400

Explain the meaning of  

Σ_{i=1}^10 (2i+1)

 Σ_{i=1}^10 (2i+1) Means "sum the first 10 terms of  2i+1 starting at  i=1 . That is,

Σ_{i=1}^10 (2i+1)= (2(1)+1)+(2(2)+1)+...+(2(10)+1)

400

Julie is a sky diver who executes their jumps from an altitude of 12,500 ft. After they step off the aircraft, they immediately starts falling. Given that the acceleration due to gravity is -32 ft/s2, provide a function s(t) that models Julie's position at time  t .

s(t)=-16t^2+12500

400

 int 3/{5y+4}dy 

Evaluate the integral using u-sub!


int 3/{5y+4}dy = 3/5 ln|5y+4| +C

400

\int (sin(x)+cos(x)+sec^2(x)+csc(x)cot(x))dx

\int (sin(x)+cos(x)+sec^2(x)+csc(x)cot(x))dx

=-cos(x)+sin(x)+tan(x)-csc(x)+C

400

Evaluate

d/dx \int_3^x e^{-t^2}dt

d/dx \int_3^x e^{-t^2}dt=e^{-x^2}

500

True or False?

∫ {4cosx}/sin^2x dx=-4csc(x) + C

Why/why not?

True

∫ {4cosx}/sin^2x dx=-4csc(x) + C

because 

d/dx (-4csc(x)+C)=-4csc(x)cot(x)

=-4(1/sin(x))(cos(x)/sin(x))

=-4cos(x)/sin^2(x)

500

Kathy can skate at a velocity of  10+cos(pi t) feet per second. What is Kathy's total displacement in the first 5 seconds of skating?

Kathy's displacement is 

 int_0^5 (10+cos(pi t))dt= 50 feet

500

 int 1/sqrt {1-4x^2}dx

Evaluate using u-sub!

int 1/sqrt {1-4x^2}dx = 1/2 arcsin(2x)+C

500

\int (3/{1+x^2}+1/sqrt{1-x^2})dx

\int (3/{1+x^2}+1/sqrt{1-x^2})dx= 3arctan(x)+arcsin(x)+C

500

Given

A(x)= \int_{3x^2}^a cos^2(t)dt,

find  A'(x)

A'(x)=d/dx \int_{3x^2}^a cos^2(t)dt=-cos^2(3x^2)(6x)

M
e
n
u