Antiderivatives
Riemann Sum & Area
Integrals
u-Substitution
Fundamental Theorem
100

f'(x)=3x^2

f(x)=x^3+C

100

The width of each rectangle when you divide the interval 

[a,b]

into n rectangles.


(b-a)/n

100

int_0^1 3x^2+1 dx

2

100

int (3x+1)^4 dx

1/15 (3x+1)^5+C

100

Find the error:

int_a^b f(x)dx = F(a)+F(b)

int_a^b f(x)dx = F(b)-F(a)

200

f'(x)=sin(x)

f(x)=-cos(x)+C

200

The area under the curve:

25/2 pi

200

int sec(x)tan(x) dx

tan(x)+C

200

int 1/(2x+3)dx

1/2 ln|2x+3|+C

200

Determine f(5) if f(2)=1 and 

int_2^5 3f'(x)dx = 12.

f(5)=5

300

f'(x)=x^3 and f'(1)=1

f(x)=1/4 x^4+3/4

300

sum_(j=1)^n k

(n(n+1))/2

300

int 5/x dx

5ln|x|+C

300

int 2 e^(3x)dx

2/3 e^(3x)+C

300

d/dx int_1^x sin(t^3)dt

sin(x^3)

400

f'(x)=3sec(x)tan(x)

f(x)=3sec(x) + C

400

Find area from 0 to 3 under the curve:

4

400

int sqrt(x) dx

2/3 x^(3/2) + C

400

int x(x+1)^5dx

1/7 (x+1)^7 - 1/6 (x+1)^6 +C

400

d/dx int_3^(x^2) sqrt(t-1) dt

2x sqrt(x^2-1)

500

f'(x)=1/(x^2+1)

f(x)=arctan(x)+C

500

The below limit represents what area?

lim_(n->oo) 4/n sum_(k=1)^n sqrt(2+4/n k)

int_2^6 sqrt(x) dx

500

int (4e^x+e) dx

4e^x+ex+C

500

int sin^2(x)cos(x)dx

1/3 sin^3(x)+C

500

d/dx int_(2x)^(3x) tan(t)dt

3tan(3x)-2tan(2x)

M
e
n
u