PROPORCIONALIDAD DIRECTA E INVERSA
REPARTOS DIRECTA O INVERSAMENTE PROPORCIONALES
PORCENTAJES
INTERÉS BANCARIO
100

Si 3 cuadernos cuestan 6 €, ¿cuánto costarán 6 cuadernos?

12

100

Se reparten 60 € de forma directamente proporcional a 2 y 4.
¿Qué cantidad recibe el mayor?

40€

100

¿Cuál es el 25% de 200?

50

100

 Si depositas 1.000 € al 5% anual durante 1 año, ¿cuánto interés ganas?

50€

200

Un coche tarda 4 horas en recorrer una distancia a 60 km/h.
Si aumenta la velocidad, ¿qué tipo de proporcionalidad hay entre velocidad y tiempo?

INVERSA

200

Se reparten 90 € de forma inversamente proporcional a 2 y 3.
¿Quién recibe más dinero?

2

200

Un producto cuesta 80 € y tiene un descuento del 10%.
¿Cuál es su precio final?

72€

200

Un capital de 600 € se invierte al 10% anual durante 1 año con interés simple.
¿Cuál es el capital final?

660€

300

Si 5 trabajadores tardan 12 días en hacer un trabajo, ¿cuántos días tardarán 10 trabajadores, suponiendo el mismo rendimiento?

Es proporcionalidad inversa.
6 días

300

Reparte 120 € de forma directamente proporcional a 3, 4 y 5.

3 → 30 €

4 → 40 €

5 → 50 €

300

Si el 20% de una cantidad es 50, ¿cuál es la cantidad total?

250

300

Calcula el interés simple producido por 2.000 € al 4% anual durante 3 años.

240€

400

Indica si la relación es directa o inversa y resuelve:
Cuanto mayor es el número de grifos abiertos, menor es el tiempo necesario para llenar una piscina.
Si con 2 grifos se llena en 10 horas, ¿cuánto tardará con 5 grifos?

Inversa

4 horas

400

Tres personas se reparten 180 € de forma inversamente proporcional a 2, 3 y 6.
¿Cuánto recibe cada una?

3 → 90 €

2 → 60 €

1 → 30 €

400

Un artículo aumenta su precio un 20% y después se le aplica un descuento del 20%.
¿El precio final es mayor, menor o igual al inicial?

Menor

400

Un capital de 1.200 € se invierte al 6% anual durante 2 años con interés compuesto.
Calcula el capital final.

1348,32€

500

Tres personas se reparten 240 € de forma directamente proporcional a los números 2, 3 y 7.
¿Cuánto recibe cada una?

2 →40€

3 → 60€

7 → 140€

500

Se reparten 300 € de forma inversamente proporcional a 2, 3 y 6.
¿Cuánto recibe cada persona?

3 → 150 €

2 → 100 €

1 → 50 €

500

Un artículo aumenta su precio un 30% y posteriormente disminuye un 30%.
Si el precio inicial era 100 €, ¿cuál es el precio final?

91€

500

Un capital de 1.000 € se invierte al 12% anual con capitalización mensual durante 1 año.
Calcula el capital final.

1126,49€

M
e
n
u