Convert to Exponential Form:
log_2(8)=x
2^x=8
Solve for x:
5^(2x)=25
x=1
Condense the Logarithms:
log_3(2x)-log_3(5y)
log_3((2x)/(5y))
Solve using Logarithms:
log_7(49) = x
x=2
Convert to Logarithmic Form:
4^y=x
log_4(x)=y
Solve for x:
5*2^x=240
log_(2)(48)
Completely Expand the Logarithm:
log((2x)/y)
log(2)+log(x)-log(y)
Solve Using Logarithms:
log_3(1/27)=
x= -3
Convert to Exponential Form:
log_(x)(4)=2y
(x)^(2y)=4
Solve for x:
3^(2x)=27
x=3/2
Condense the Logarithms:(use ln the same as any other log)
2log(3)-2log(x)+4log(y)
log((9y^4)/x^2)
Solve by Converting:
log_4(x)=-5
x = 1/1024
Convert to Logarithmic Form:
2^(x+4)=y
log_2(y)=x+4
Solve for x:
2*3^(x-5)=12
log_(3)(6)+5
Condense the Logarithms:
3log(x)+4log(2)-5log(z)+3log(3)
log((16x^3)/(27z^5))
Solve using Logarithms:
log_x(1/64) = -2
x = 8
Convert to Exponential Form:
log_(3)(5-z)=4y
(3)^(4y)=5-z
Solve for x:
2^(3x)-7=13
(log_(2)(20))/3
Completely Expand the Logarithm:
log_7((3x^6y^7)/(z^5))
log_7(3)+6log_7(x)+7log_7(y)-5log_7(z)
Solve using Logarithms:
log_(x+2)(16)=2
x=2