basic truth tables
logical truth/falsity/indeterminacy
logical consistency/equivalence
logical validity
logical entailment
100

how many rows will be in this truth table? 

[∼ D & (B ∨ G)] ⊃ [∼ (H & A) ∨ ∼ D]

16

100

label: 

( Fa → ( ∼ Gb → Fa ))

arrow=horseshoe

logically true

100

is it equivalent? counter example if not

( Gk → Db ) ,( ∼ Gk → ∼ Db )

arrow=horseshoe

TTFT, TFTT, 

No, second and third rows

100

is it valid? show why if not

( Hd ◦ Jc ), ∼ Jc ,( Hd → Jc )

arrow=horseshoe

o=wedge


invalid

TTTF, FTFT, TFTT

second row

100

does it entail, give a counterexample

( Fa & Gb ), ( ∼ Fa → Gb )

arrow=horseshoe



TFFF, TTTF

Yes


200

how many rows in this truth table? 

(B & C) ⊃ [B ∨ (C & ∼ C)]

4

200

label: 

(( Gb & ∼ Fa ) ◦ Gb )

o=wedge

logically indeterminate 

TFTF

200

is it equivalent?

( Fa & ( Fb ◦ Fc )), (( Fa & Fb ) ◦ ( Fa & Fc ))

o=wedge

YES

TTTFFFFF

200

is it valid, show why if not

( Fa → Gb ) ,( Gb → Hc ), ( Fa → Hc )

arrow=horseshoe

valid

TTFFTTTT, TFTTFTT, TFTFTTTT

200

does it entail? give a counter example if not

( Fa → Hc ) ,( Hc → Fa )

arrow=horseshoe



TFTT, TTFT

No, third row

300

construct a truth table

(A & B) triple bar ∼ B

FFTF

300

label: 

( Gb ↔ ( Fa ◦ ∼( Fa & Gb )))

double arrow=triple bar

circle=wedge 

logically indeterminate 


300

is it consistent? 

( Fa → Gb ) ,( Fa → ∼ Gb )

show where

arrow=horseshoe

yes

TFTT, FTTT

last two rows

300

is it valid show why if not

∼( Fa ◦ ( Jd & Fa )), ( Fa ◦ ∼ Jd )

o=wedge

invalid

FFTT, TTFT

3rd row

300

does it entail: 

(( ∼ Hl → Je ) → ( Je → Hl )), ( Hl → Je )

arrow=horseshoe


TTFT, TFTT

No, second row

400

construct a truth table:

(Ma → ∼ (F g → ∼Eab))

arrow:horseshoe

TTFTFTFT

400

label: 

(( Ha → Jb ) & ∼ ∼(( Jb ◦ Ax ) → Ha ))

arrow: horseshoe

logically contingent

TFFFTFFT

400

is it consistent? 

( Fa → Gb ) ,( Gb → Hc ), ( Fa → ∼ Hc )

show where

arrow-horseshoe

YES

TTFFTTTT, TFTTTFTT, FTFTTTT

first two rows, 6th and last row

400

is it valid, show why if not

(( Hg ↔ Kd ) ↔ Fa ) ,∼ Hg ,( Kd → ∼ Fa )

double arrow-tripe bar

arrow-horseshoe

valid

TFFTTFFT, FFTTFFTT, FTFTTTTT

400

Does it entail? give counter example

( Fa & (( Fa ◦ Gb ) → Gb )), Gb

arrow=horseshoe

o=wedge

TFFF, TFTF

Yes

500

construct a truth table

[Fb → (Gd & Fb)] → ∼J d f )

arrow: horseshoe 

FTTTFTFT

500

LABEL: 

Ad Bc Fg (( Ad → ( Bc → Fg )) → (( Ad & Bc ) → Fg ))

arrow: horseshoe

logically true

500

is it consistent? show where

( Fc → ( Gb → Jm )), ∼ Jm ,( Fc & Jm )

arrow=horseshoe

NO


500

is it valid show why if not

( Fh → ( ∼ Hf & Kd )) ,( Kd ↔ Hf ), ( Fh → Kd )

VALID

FFTFTTT, TFFTTFFT, TFTFTTTT

500

Does it entail? give counter example

( Jd ↔ ( Ja → Fc )) ,(( Fc ◦ Ja ) → Ja )

TFFTTFTF, TTTTFFFT, 

no, 5th and 7th row

M
e
n
u