Domain/Range + Function Behavior
Graphing Functions
Composite Functions
Inverse Functions
Piecewise Functions
100

Identify the domain and range (use interval notation).

Domain:

(-oo,2]

Range: 

[-2,oo)

100

Identify the parent function.

h(x) = 1/x+7

Parent Function: Rational Functions

100

Let f(x)=6x^2  and  g(x)=14x+4 

Find g(f(1)).

g(f(1))=88

100

Find the inverse for the following relation:

{(2,4), (4, 6), (-1, 3)}

{(4, 2), (6, 4), (3, -1)}

100

Using the graph below, complete the piecewise function by filling in the missing domain restrictions.

f(x)={(0.5x^2-1, ),(2x,):}

{(0.5x^2-1, x≤-1),(2x, x> -1):}

200

Identify the domain and range (use inequality notation).

Domain: -4 ≤ x < 6

Range: -8 ≤ y < 2

200

Identify the parent function and describe the transformation.

f(x)=-|x|+2

Parent Function: Absolute Value

Description: Reflected across the x-axis and shifted up 2 units.

200

Let f(x)=6x^2  and  g(x)=14x+4 

Find (f∘g)(0.5).

(f∘g)(0.5) = 726

200

Find the inverse of f(x)=1/3x-2  and state the domain of f(x) and f^-1(x)

f(x)=1/3x-2

Domain of f(x): -∞ < x < ∞


f^-1(x)=3x+6

Domain of f^-1(x): -∞ < x < ∞

200

Given  g(x)={(2x+17, x<-1),(-3-x,-1≤x<4),(x^3,x≥4):} 

Find: 

1. g(0)

2. g(-1)

3. g(5)

1. g(0) = -3

2. g(-1) = -2

3. g(5) = 125

300

Idenitfy the domain, range, and zeros of the function.

Domain: (-∞, ∞)

Range: (-∞, ∞)

Zeros: x = -4, -1, 3

300

Identify the parent function and describe the transformation.

g(x)=1/2sqrt{x+4} 

Parent Function: Square Root

Description: Vertical shrink by a factor of 1/2 and shifted 4 units left

300

Let g(x)=x-2  and  f(x)=4x+3

Find (f∘g)(a). Simplify if possible.

f(g(x)) = 4a-5

300

Are  g(x) = 1/4x-1 and  h(x)=4x+4 inverses of each other? Justify your reasoning using the inverse composition rule.

Yes they are since 

g(h(x)) = x and g(g(x)) = x.

300

Graph the following function:

{(-2, x≥3),(5, x<3):}

400

Identify the intervals for increasing, decreasing, and/or constant.

Increasing: (-∞, 4)

Decreasing: (4, ∞)

Constant: None

400

Given the parent function and a transformation description, write the equation of the transformed function.

“A quadratic function that has been shifted 5 units right and reflected across the y-axis”

f(x)=(-x-5)^2

400

Let h(x)=7/x and  g(x)=-x^2.

Find g(h(b)). Simplify if possible.

g(h(b))=-49/b^2

400

Are f(x) = x^3+1 and  g(x)=root(3)(x+1) inverses of each other? Justify your reasoning using the inverse composition rule

No they are not since

f(g(x)) = x+2 and g(f(x)) =root(3)(x^3+2)

400

Graph the following function:

{(x+1, x≥2),(-2x, x<1):}

500

Identify the intervals for increasing, decreasing, and/or constant.

Increasing: (5, ∞)

Decreasing: (2, 5)

Constant: (-∞, 2)

500

Identify the parent function and write the equation for the transformed function.

Parent Function: Quadratic

f(x) = 2(x-5)^2

500

Let h(x)=7/x, f(x)=x-2  and g(x)=-x^2.

Find f(g(h(3.5))).

f(g(h(3.5))) = -6

500

Find the inverse of f(x)=x^2+4  and state the domain of f(x) and f^-1(x)

f(x)=x^2+4

Domain: 0 ≤ x < ∞

f^-1(x)=sqrt(x-4)

Domain: 4 ≤ x ≤ ∞

500

Write an equation for the following function.

f(x)={(x^2-1,x<2),(3, x≥2):}

M
e
n
u