Domains and Ranges of Trig and Inverse Trig
Exact Values of Trig Functions
Misc Trig Function Questions
Misc Rational Function Questions
End Behavior of Rational Functions
100

Domain of 

f(x) = \sin(x) +1

\mathbb{R}

100

\cos(\frac{4\pi}{3})=

-\frac{1}{2}

100

The length of the side opposite the 30^{\circ} angle in a 30-60-90 triangle with a hypotenuse of length 6.

3

100

Determine which of the following are rational functions (can be multiple):

f(x) = \frac{x^2+2}{x} 

g(x) = -7 

h(x) = -9x^3+x^2-7x+1 

All of them

100

Determine the horizontal asymptote(s) of

f(x) = \frac{-3x^3-2x+1}{x^4+7}

Horizontal asymptote at 

y=0

200

Range of 

f(x)=arcsin(x)

[-\frac{\pi}{2},\frac{\pi}{2}]

200

\cos(\arccos(-\frac{\sqrt{3}}{2}))=

-\frac{\sqrt{3}}{2}

200

Solve for x: 

tan(x)+3=2

x=\frac{3\pi}{4}+\pi k

for k an integer

200

Determine the y-intercept of 

f(x) = \frac{2x^2-8x}{x^4+6}

(0,0)

200

Determine the horizontal asymptotes of 

f(x) = \frac{x^6+1}{x^2-9}

No horizontal asymptotes

300

Range of 

f(x) = \arctan(x)

(-\frac{\pi}{2},\frac{\pi}{2})

300

\arccos(\tan(\frac{3\pi}{4}))=

\pi

300

Quadrant in which an angle of 2.5 radians lies.

Quadrant II

300

Domain of

f(x)=\frac{x^3-2x+7}{x^2+5x-14}

 in interval notation

(-\infty,-7)\cup(-7,2)\cup(2,\infty)

300

Find all holes (removable discontinuities) of

f(x) = \frac{(x+1)(x-1)}{x^2-3x+2}

Hole at

(1,-2)

400

Domain of 

f(x) = -\arccos(x-1)+2

[0,2]

400

\arcsin(\sin(\frac{16\pi}{3}))=

-\frac{\pi}{3}

400

Asymptotes of 

f(x) = \tan(x+\frac{\pi}{4})+1

Vertical asymptotes at

x=\frac{k\pi}{2}-\frac{\pi}{4}

 for all odd integers

k

400

Determine the x-intercepts of 

f(x)=\frac{x^2+2x-3}{x^2+4x+3}

(1,0)

400

Determine the vertical asymptotes of 

f(x) = \frac{(x+1)(x-1)}{x^2-3x+2}

Vertical asymptote at 

x=2

500

Domain of 

f(x) = \sin(\arccos(2x)) + \cos(\arcsin(8x+3))

[-\frac{1}{2},-\frac{1}{4}]

500

\sin(\arctan(-\frac{12}{5}))=

-\frac{12}{13}

500

Angle in radians rotated once an object has moved

 2/9 of the way around the perimeter of the unit circle.

\theta = \frac{4\pi}{9}

500

\lim_{x\to 1}\frac{(x+2)(x+1)}{(x-1)(x-3)}=

DNE (limit from left is \infty and limit from right is  -\infty )

500

Determine all holes and vertical asymptotes of 

f(x) = \frac{(x-7)(x+2)}{3x^2+4x-4}

Vertical asymptote at x=2/3 and hole at  (-2,\frac{9}{8})  

M
e
n
u