Definitions
Limits
Derivatives
Integrals
Theorems
100

Definition of derivative f at a 

f'(a)=\lim_(x->a)\frac(f(x)-f(a))(x-a)

100

 \lim_(x->infty)\frac(5x^2sin(1/x)+7x^3)(8x^+5x^2+3x^3) 

7/3

100

\frac(d)(dx)[\int_(3x^2)^sinx(\sqrt(x^2+cos(x)))dx]

[\sqrt(sin^2x+cos(sinx))](cosx)-[\sqrt((3x^2)^2+cos(3x^2))](6x)

100

\int(sec^2(3x)+5x^6+3sinx)dx

1/3tan(3x)+5/7x^7-3cosx+C

100

d/dx[\int_g(x)^(h(x))f(t)dt]=f(h(x))h'(x)-f(g(x))g'(x)

Fundamental Theorem of Calculus - chain rule edition

200

Definition of f being continuous at a

\lim_(x->a)f(x)=f(a)

200

\lim_(x->5^-)\frac(|x-5||x-2|)(x^2-8x+15)

-\frac(3)(2)

200

\frac(d)(dx)(x^(sin(x)))

x^(xsinx)(cosxlnx+\frac(sinx)(x))

200

\int\d/dx((cos^5(x))/(4x^x))

(cos^5(x))/(4x^x)+C

200

Let  f(x) be continuous on  (a,b) . Then for any  y between  f(a) and  f(b), there exists a  c between a and b such that f(c)=y 

The Intermediate Value Theorem

300

What is this process of simplification?

x^2+6x=1=>x^2+6x+9=10

(x+3)^2=10

Completing the square

300

\lim_(x->1)\frac(e^(2x-2)-1)(3x-3)

2/3

300

\frac(d)(dx)[\int_-6^9(9x^7+2sec^2x+(lnx)/x)dx]

0

300

\int\frac(cos(\sqrt(x)))(2\sqrt(x))dx

sin(\sqrt(x))+C

300

Suppose that  f(x)\leqg(x)\leqh(x) and \lim_(x->a)f(x)=c=\lim_(x->a)h(x) . Then  \lim_(x->a)g(x)=c 

The Squeeze Theorem

400

What is this commonly used notation called?

\frac(dx)(dt)

Leibniz notation 

400

\lim_(x->0)sin(1/x)

DNE

400

d/dx[e^(e^(e^(e^x)))]

e^(e^(e^(e^x)))e^(e^(e^x))e^(e^x)e^x

400

\int_-27^27(4x^7+(3x^3)^3+sin(x))dx

0

400

A continuous function on a closed interval  [a,b] must have a max and a min. Another name for the min/max theorem.

The Extreme Value Theorem
500

What do we use to approximate integrals?

Riemann sums
500

\lim_(x->infty)\sqrt(x^2+x)-x

1/2

500

A paper water cup has radius 3 centimeters and height of 7 centimeters, and is in the shape of a cone. The water is 4 centimeters deep, and the cone is placed such that the base of the cone is below the tip of the cone. The water's temperature is increasing at 4 millikelvins per second, and the water is dyed green. What is the acceleration of the top of the water?

-9.8 m/s^2

500

\int_-3^3\sqrt(9-x^2)dx

(9\pi)/2

500

If  f is continuous on [a,b] , then there exists  c\in[a,b] such that

f(c)(b-a)=\int_a^bf(x)dx

The Mean Value Theorem for integrals

M
e
n
u