Ch.6 Applications of Integrals
Ch.7 Techniques of Integration
Ch.8 Further Applications of Integration
Ch.9 Differential Equations
Ch.11 Sequences, Series and Power Series
100

Find the volume of the region

about the y-axis.

\frac{22\pi}{3}

100

\int xe^{2x} dx

\frac1 2 xe^{2x}- \frac1 4 e^{2x}+C

100

Find the center of mass given

m_1=5,m_2=8,m_3=7, \quad (3,1),(0,4),(-5,-2)

(-1,\frac23 20)

100

y=\sqrt x

a solution for

xy'-y=0

No

100

The series

 \sum_{n=1}^\infty \frac{1}{n^3}  

converges or diverges?

Converges. (p-series)

200

Find the area of the given region by

e-(\frac{1}{e})+\frac10 3

200

\int sin^5(2t)cos^2(2t)dt

-\frac1 14 cos^7(2t)+ \frac1 5 cos^5(2t)- \frac1 6 cos^3(2t) +C

200

Find the arc length of

y=\frac{1}{2}ln(sin(2x)), \quad \pi/8 \leq x \leq \pi/6


\frac1 2 [\ln(\frac{1}{\sqrt{3}})-\ln(\sqrt{2}-1)]

200

Find the general solution for

\frac{dy}{dx}=3x^2y^2

y=\frac{-1}{x^3+C}

200

The series

\sum_{n=2}^\infty \frac{1}{n (\ln n)^3}

converges or diverges?

Converges. (integral test)

300

Find the volume of the region bounded by

y=\sqrt{5+x^2},\quad y=0,\quad x=0,\quad x=2

about the y-axis

\frac{2}{3}pi(27-5\sqrt 5)

300

\int \frac{5x+1}{(2x+1)(x-1)}dx

\frac1 2 ln|2x+1|+2 ln|x-1|+C

300

Find the arc length of

x=sin(y), \quad 0 \leq y \leq \pi/2

1

300

Find the general solution for

\frac{dp}{dt}=t^2p-p+t^2-1

y=Ce^{\frac{1}{3}t^3-t}-1

300

The series

\sum_{n=1}^\infty (-1)^n \frac{1}{\sqrt{n^2-9}}

is absolutely convergent, conditionally convergent or divergent?

Converges absolutely (Alternating Series Test)

400

Find the volume of the region bounded by

x=2y^2, \quad y \geq 0, \quad x=2

about y=-2

\frac{13pi}{3}

400

\int_3^\infty \frac{1}{(x-2)^{3/2}}dx

2

400

Find the center of mass of

(\frac3 2 ,\frac3 5 )

400

Find the specific solution for

\frac{dy}{dx}=xe^y, \quad y(0)=0

y=-\ln(1-\frac1 2 x^2)

400

The series

\sum_{n=1}^\infty \frac{n!}{100^n}

converges or diverges?

Diverges. (Ratio Test)

500

Find the volume of the region bounded by

y=\sin(x), \quad y=cos(x), \quad 0 \leq x \leq \pi/4

about y=-1.

\pi(2\sqrt{2}-\frac3 2)

500

\int \frac{\sqrt{4x^2-25}}{x}dx

\sqrt{4x^2-25}-5sec^{-1}(\frac2 5 x)+C

500

Find the center of mass of the region

ysin(2x), \quad y=sin(x), \quad 0 \leq x \leq pi/3

(pi-3/2\sqrt(3),3/8\sqrt(3))

500

Find the specific solution for

\frac{du}{dt}=\frac{2t+sec^2t}{2u}, \quad u(0)=-5

u=-\sqrt{t^2+tan t+25}

500

What is the Taylor series for

f(x)=\frac{1}{1+x}

centered at a=2.

\sum_{n=0}^\infty (-1)^n \frac{1}{3^{n+1}}(x-2)^n

M
e
n
u