Unit 1
Unit 2
Unit 3
Unit 4
Additional ?'s
100

Express the Domain of the following graph in:

a) Inequality Notation

b) Interval Notation

a) x ≤ -1

b) (-∞,-1]

100

Simplify 

sqrt(16y^2x^6)

4yx3

100

Find the AOS, domain, range, and vertex of the function:

AOS: x = 4

Domain: (-∞,∞)

Range: [-4,∞)

Vertex: (4,-4)

100

Solve by factoring:  

x^2-x-12=0

x=4 and x=-3

100

Subtract

(4-7i)-(5+2i)

-1-9i

200

List the transformations:  

y=-1/3abs(x+2)-5

Reflect, VC, Left 2, Down 5

200

Simplify 

(3m^(8))*(-9m^(5))

-27m13

200

What are the solutions for the following quadratic:  (x-9)(2x+1)=0

x=9 and x=-1/2 or -.5

200

Use the quadratic formula to solve the following:

2x^2-5x+1

x=(5+-sqrt(17))/4

200

Multiply 

(4-7i)(5+2i)

34 - 27i

300

Write the equation for the following graph:

y = |x + 5| - 7

300

Write the radical in rational exponent form:  

sqrt(p^7)

p^(7/2)

300

Describe the transformations for the following quadratic and find the vertex:  

y=-2(x-4)^2+9

Reflection, Vertical Stretch(Skinnier), Right 4, Up 9

Vertex is (4,9)

300

Factor:  9x2 - 100

(3x - 10)(3x + 10)

300

Find the vertex of y = x2 -10x + 25

(5,0)

400

Solve 3|x - 4| +7 = 13

x = 2 and x = 6

400

Multiply

(x-3)(x2+8x-4)

x3+5x2-28x+12

400

A fish jumps out of water. The function

h(t) =

-16t^2+24t

models the height, in feet, of the fish above water after t seconds.  How long is the fish out of water? (Round to the nearest tenth of a second)

1.5 seconds

400

Factor completely:

4x2 + 2x - 12

2(2x-3)(x+2)

400

Solve 3|3x - 4| +7 = 1

No Solution (absolute value can not equal a negative after you isolate it)

500

Find the solutions to the following absolute value inequality:  |x-3| - 5 < 1

(less thAND type problem) 

Solution:  -3 < x < 9 

500

Simplify 

(5x-4)^2

25x^2-40x+16

500

Find the zeros for the following function  (Solve using the quadratic formula)

f(x)=x^2-3x-6

x=(3+-sqrt(33))/2

500

Solve 

81x^2+49=0

x=-7/9i and x=7/9i

M
e
n
u