Logarithms
Unit Circle
Imaginary Numbers
Complex Numbers
Polynomials
100

Condense the Logarithm

k log a+g log d

log adg



100

What are the x and y values while the degree is 90°?

(x,y)

(0,1)

100

Write √−125 in simplest radical form.

5i√5

100

i2 is what

what is -1

100

Consider the polynomial y=3x-4x3

Is it monomial, binomial, or trinomial?

What is Binomial


200

Condense the Logarithm 

7 log a−x log d

log a7/d

200

What are the x and y values while the degree is 360°?

(x,y)

(1,0)

200

Write √-250 in simplest radical form

5i√10

200

Conjigate of -4 +6i

 -4 -6i

200

The leading coefficient of y=3x-4x3 is what?

3x

300

Put in simplest form

3 log4

logb64

300

What are the x and y values while the degree is 45°?

(x,y)

(√2/2, √2/2)

300

Simplify the expression to a + bi form:

(−6−7i)(−3+5i)



53−9i

300

Conjugate 

(-2-3i)(2+3i)

13

300

Rewrite the following polynomial in standard form.

10x2+1-6x

10x2-6x+1

400

Put in simplest form

log6 − log2

log3

400

What are the x and y values while the degree is 210°?

(x,y)

(-√3/2, -1/2)

400

Simplify the expression to a + bi form:

(−5+8i)−(8+9i)

−13−i

400

Conjagate 

-3+7i / -3-3i

-12-30i/18      or  -4/6  - 5/3

400

Find the y-coordinate of the y-intercept of the polynomial function defined below.

F(x)=8x2+4x3+3x

0

500

Expand the logarithm

 log x5z/y4

5 log x+log z−4 log y

500

What are the x and y values while the degree is 1260°?

(x,y)

(-1,0)

500

Simplify the expression to a + bi form:

(10+2i)2

96+40i

500

Find the equation with given roots

roots: 4 +3i and 4-3i

x2-8x+25

500

Rewrite the following polynomial in standard form.

1+ x3/6+5x

1/6x3+5x1+1

M
e
n
u