F.U.N. πŸŽͺ
Review πŸ”„ (Ch. 1)
I ❀️ Limits
πŸ˜” Derivatives
LOGS πŸͺ΅
100

Compute the following: 

2+(5-7)^2\div 4*9

11

100

Find the slope of the line with the following points: (45,10), (57,8)

-1/6

100

Calculate the following limit: 

lim_{x->4}x^2+3x-7

21

100

Find the derivative: 

h(x)=4x^2+5x

h'(x)=8x+5

100

Solve the following: 

e^x-4=6

x=ln(10)

200

If the parent function is

y=\sqrt(x)

, then list out the transformations for the following function: 

g(x)=-3\sqrt(x-2)+7

- Reflection over the x-axis

- Vertical stretch by 3 units/horizontal compression by 3 units

- Translation 2 units right 

- Translation 7 units up

200

Find the tangent line of

f(x)=3x^2+4x-10

at

x=-3

.

y=-14x-37

200

Find the limit: 

lim_{x->5}(x^2-13x+40)/(x-5)

-3

200

Find the derivative: 

(3x^2)(4x+5)

36x^2+30x

200

Find the derivative of the following: 

3ln(2x^2+3x)

(12x+9)/(x^2+3x)

300

Compute 

(4x+5)/6-(8-x)/3=0

7/2

300

List the roots for the following function: 

2x^2-5x+2

(1/2,0)(2,0)

300

Find the limit: 

lim_{x->3}(4x^2-9x-9)/((x-4)(x-3))

-15

300

Find the derivative: 

h'(x)=40/(2x+1)^2

40/(2x+1)^2

300

Find the following derivative: 

(ln(4-6x))/x

(((-6x)/(4-6x)-ln(4-6x)))/x^2

400

Compute the following: 

cos((3\pi)/4), cot((11\pi)/6), sec((7\pi)/4)

-\sqrt2/2, -\sqrt3, \sqrt2/2

400

Find the inverse of the following function: 

h(x)=(x+5)/(3x-2)

h^{-1}(x)=(-5-2x)/(1-3x)

400

Find the limit: 

lim_{h->0}((1+h)^2-1)/h

2

400

Find derivative of the following logarithm: 

y=ln(sin(x^2))

y'=(2xcos(x^2))/sin(x^2)

400

Solve the following: 

3e^x-8e^-x=5

x=8/3,1

500

Solve the following (If you can, give ALL solutions): 

sec(x)tan(x)=\sqrt3/2

x=\pi/3+n\pi

x=(2\pi)/3+n\pi

500

Expand the following using laws of logarithmic functions: 

ln(6/\sqrt(e^3))

ln(6)-3/2

500

Find the limit: 

lim_{x->9}(t-9)/(\sqrtt-3)

6

500

Find derivative of the following logarithm: 

h(x)=log(sec(x))

h'(x)=(sec(x)tan(x))/(sec(x)ln(10))

500

Compute the derivative using logarithmic differentiation: 

y=x^{\sqrtx}

y'=x^{\sqrtx-1}(2\sqrtx+\sqrtxlnx)

M
e
n
u