Simplifying Polynomials
Factoring
Sketching Polynomials
Radicals
100

(x3 + 3x2 + 5x − 4) − (3x3 − 8x3 − 5x + 6)

-2x+ 11x2 + 10x - 10

100

45d5 - 15d3

15d3(3d2 - 1)

100

Determine the end behavior.

y = -3x-x + 6

degree:  2

LC: negative

End Behavior: down down

100

4sqrt(12) + 2sqrt(27)

14sqrt(3) 

200

-4x2(-5x + 8x3)

20x- 32x5

200

y2 - 4y - 21

(y - 7)(y+ 3)

200

Determine the end behavior.

y = x2 (x+3)(x - 5)4

Degree:  7

LC: positive

End Behavior:  down up

200

5sqrt(200) - 3sqrt(50)

35sqrt(2)

300

(2x - 5) (3x + 4)

6x2 - 7x - 20

300

9a2 - 49c2

(3a + 7c)(3a - 7c)

300

Determine the solutions algebraically.

(x2 + 7x + 12)(x - 8) = 0

{-3, -4, 8}

300

2sqrt(3)(3sqrt(6) - 3sqrt3)

18sqrt(2) - 18

400

(21x^3 - 35x^2)/(7x)

3x2-5x

400

Factor Completely

3x2 -75

3(x + 5)(x - 5)

400

State the degree, the zeros and the end behavior and make a sketch. 

f(x) = x(x2 - 9)(x+ 9x + 18)

0 mult 1      3 mult 2

3 mult 1      -6 mult 1

degree 5   LC positive

down up


400

(2sqrt5 + 6 sqrt15)/(2sqrt5)

1 + 3sqrt3

500

(x^3 -15x + 6)/(x + 4)

x- 4x + 1 

2/(x+4)

500

x4 - 5x3 + 2x - 10

(x3 + 2)(x - 5)

500

Determine the solutions and then write a possible equation for the graph in factored form.


-5 mult 1   -3 mult 1    2 mult 2

degree 4   LC negative

f(x) = -(x + 5)(x + 3)(x - 2)2

500

7/(3 - sqrt2

3 + sqrt(2)

600

3x2 + 14x + 8

(3x + 2) (x + 4)

M
e
n
u