Inverse Trig Values
T.I.F Compositions
T.I.F Compositions with Different Inverses
Composition of Unit Circle Values
Compositions of T.I.F w/ Variable Expressions
100

Give the exact value for sin-1 

sqrt(2)/2

x = pi/4

 

100

In terms of radians, find the exact value of 

sin^-1(sin((5pi)/6) )

x = pi/6

100

Find the exact value of 

cos(tan^-1(7/24) 

costheta = 24/25

100

Find the exact value of 

tan^-1(cos 2pi)

theta = pi/4

100

Rewrite this statement as an algebraic expression:

cos(sin^-1u)

x=sqrt(1-u^2)

200

Give the exact value for arc cos 

-sqrt3/2

x = (5pi)/6

200

In terms of radians, find the exact value for 

cos^-1(cos((4pi)/3) 

x = (2pi)/3

200

Find the exact value of 

tan(sin^-1(8/17))

tantheta = 8/15

200

Find the exact value of 

cos^-1(sin ((5pi)/3)

theta = (5pi)/6

200

Rewrite the following statement as an algebraic expression:

tan(cos^-1 5v)

r =sqrt(1-25v^2)/(5v)

300

Give the exact value for 

csc^-1(2)

x = pi/6

300

In terms of radians, find the exact value for 

tan^-1(tan((7pi)/4)

x = -(pi)/4

300

Find the exact value of 

cot(sin^-1(-8/9))

cottheta = - sqrt17/8

300

Find the exact value of 

cot^-1(sin((7pi)/6))

theta = DNE

300

Rewrite the following statement as an algebraic expression:

csc(cos^-1 6v)

y = 1/sqrt(1-36v^2)

400

To the nearest tenth, give an approximate value for 

cos^-1 (-0.81)

x = 2.5

400

In terms of radians, find the exact value of 

sin^-1(sin((9pi)/8) 

x = -(pi)/8

400

Find the exact value of 

sec(sin^-1(-4/7))

sectheta = (7sqrt33)/33

400

Find the exact value of 

tan(cos^-1(1/2))

theta= sqrt3

400

Rewrite the following statement as an algebraic expression:

sec(tan^-1 8w)

sectheta = sqrt(1+64w^2)

500

To the nearest tenth, give an approximate value for 

tan^-1(4.16)

x = 1.3

500

In terms of radians, find the exact value of 

arc tan(tan((8pi)/7)

x = pi/7

500

Find the exact value of 

csc(cos^-1(-5/8))

csctheta = (8sqrt39)/39

500

Find the exact value of 

cos(tan^-1(sqrt3/3))

theta = sqrt3/2

500

Rewrite the following statement as an algebraic expression:

cot(sin^-1 2w)

cottheta = sqrt(1-4w^2)/(2w)

M
e
n
u